BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 32197322)

  • 1. Ionotropic Glutamate Receptors in Epilepsy: A Review Focusing on AMPA and NMDA Receptors.
    Hanada T
    Biomolecules; 2020 Mar; 10(3):. PubMed ID: 32197322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacology of glutamate receptor antagonists in the kindling model of epilepsy.
    Löscher W
    Prog Neurobiol; 1998 Apr; 54(6):721-41. PubMed ID: 9560847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMPA receptors as a molecular target in epilepsy therapy.
    Rogawski MA
    Acta Neurol Scand Suppl; 2013; (197):9-18. PubMed ID: 23480151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Src/CK2/PTEN-Mediated GluN2B and CREB Dephosphorylations Regulate the Responsiveness to AMPA Receptor Antagonists in Chronic Epilepsy Rats.
    Kim JE; Lee DS; Park H; Kang TC
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33348808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LU 73068, a new non-NMDA and glycine/NMDA receptor antagonist: pharmacological characterization and comparison with NBQX and L-701,324 in the kindling model of epilepsy.
    Potschka H; Löscher W; Wlaź P; Behl B; Hofmann HP; Treiber HJ; Szabo L
    Br J Pharmacol; 1998 Nov; 125(6):1258-66. PubMed ID: 9863655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting Ionotropic Glutamate Receptors in the Treatment of Epilepsy.
    Celli R; Fornai F
    Curr Neuropharmacol; 2021; 19(6):747-765. PubMed ID: 32867642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMPA receptors in epilepsy and as targets for antiepileptic drugs.
    Rogawski MA; Donevan SD
    Adv Neurol; 1999; 79():947-63. PubMed ID: 10514878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Role of excitatory amino acids in neuropathology].
    Wikinski SI; Acosta GB
    Medicina (B Aires); 1995; 55(4):355-65. PubMed ID: 8728878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMPA receptors and perampanel behind selected epilepsies: current evidence and future perspectives.
    Di Bonaventura C; Labate A; Maschio M; Meletti S; Russo E
    Expert Opin Pharmacother; 2017 Nov; 18(16):1751-1764. PubMed ID: 29023170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the maturation of osteoblasts and osteoclastogenesis by glutamate.
    Lin TH; Yang RS; Tang CH; Wu MY; Fu WM
    Eur J Pharmacol; 2008 Jul; 589(1-3):37-44. PubMed ID: 18538763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new pyrrolyl-quinoxalinedione series of non-NMDA glutamate receptor antagonists: pharmacological characterization and comparison with NBQX and valproate in the kindling model of epilepsy.
    Löscher W; Lehmann H; Behl B; Seemann D; Teschendorf HJ; Hofmann HP; Lubisch W; Höger T; Lemaire HG; Gross G
    Eur J Neurosci; 1999 Jan; 11(1):250-62. PubMed ID: 9987029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate AMPA receptor antagonist treatment for ischaemic stroke.
    Akins PT; Atkinson RP
    Curr Med Res Opin; 2002; 18 Suppl 2():s9-13. PubMed ID: 12365832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate currents in morphologically identified human dentate granule cells in temporal lobe epilepsy.
    Isokawa M; Levesque M; Fried I; Engel J
    J Neurophysiol; 1997 Jun; 77(6):3355-69. PubMed ID: 9212280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of glutamate in epilepsy and other CNS disorders.
    Meldrum BS
    Neurology; 1994 Nov; 44(11 Suppl 8):S14-23. PubMed ID: 7970002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamatergic Mechanisms in Glioblastoma and Tumor-Associated Epilepsy.
    Lange F; Hörnschemeyer J; Kirschstein T
    Cells; 2021 May; 10(5):. PubMed ID: 34067762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of NMDA and non-NMDA ionotropic glutamate receptors in the medial preoptic area on body temperature in awake rats.
    Sengupta T; Jaryal AK; Mallick HN
    J Therm Biol; 2016 Oct; 61():1-7. PubMed ID: 27712650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of NMDA and AMPA/kainate receptor antagonists on nitric oxide production in rat brain following intrahippocampal injection.
    Radenovic L; Selakovic V
    Brain Res Bull; 2005 Sep; 67(1-2):133-41. PubMed ID: 16140172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of ionotropic glutamate receptor-mediated nitric oxide production in vivo in rats.
    Bhardwaj A; Northington FJ; Ichord RN; Hanley DF; Traystman RJ; Koehler RC
    Stroke; 1997 Apr; 28(4):850-6; discussion 856-7. PubMed ID: 9099207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Human Hippocampal Neural Stem/Progenitor Cells and Their Application to Physiologically Relevant Assays for Multiple Ionotropic Glutamate Receptors.
    Fukushima K; Tabata Y; Imaizumi Y; Kohmura N; Sugawara M; Sawada K; Yamazaki K; Ito M
    J Biomol Screen; 2014 Sep; 19(8):1174-84. PubMed ID: 24980597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurokinin release in the rat nucleus of the solitary tract via NMDA and AMPA receptors.
    Colin I; Blondeau C; Baude A
    Neuroscience; 2002; 115(4):1023-33. PubMed ID: 12453476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.