These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32197541)

  • 1. Integer Versus Fractional Order SEIR Deterministic and Stochastic Models of Measles.
    Islam MR; Peace A; Medina D; Oraby T
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32197541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting unobserved exposures from seasonal epidemic data.
    Forgoston E; Schwartz IB
    Bull Math Biol; 2013 Sep; 75(9):1450-71. PubMed ID: 23729314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China.
    Olabode D; Culp J; Fisher A; Tower A; Hull-Nye D; Wang X
    Math Biosci Eng; 2021 Jan; 18(1):950-967. PubMed ID: 33525127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A stochastic model for early identification of infectious disease epidemics with application to measles cases in Bangladesh.
    Sharmin S; Rayhan MI
    Asia Pac J Public Health; 2015 Mar; 27(2):NP816-23. PubMed ID: 23165490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fractional Order Recovery SIR Model from a Stochastic Process.
    Angstmann CN; Henry BI; McGann AV
    Bull Math Biol; 2016 Mar; 78(3):468-99. PubMed ID: 26940822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The large graph limit of a stochastic epidemic model on a dynamic multilayer network.
    Jacobsen KA; Burch MG; Tien JH; Rempała GA
    J Biol Dyn; 2018 Dec; 12(1):746-788. PubMed ID: 30175687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approximating Quasi-Stationary Behaviour in Network-Based SIS Dynamics.
    Overton CE; Wilkinson RR; Loyinmi A; Miller JC; Sharkey KJ
    Bull Math Biol; 2021 Nov; 84(1):4. PubMed ID: 34800180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic effects in a seasonally forced epidemic model.
    Rozhnova G; Nunes A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041906. PubMed ID: 21230312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elementary proof of convergence to the mean-field model for the SIR process.
    Armbruster B; Beck E
    J Math Biol; 2017 Aug; 75(2):327-339. PubMed ID: 28004143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases.
    Grenfell BT; Kleczkowski A; Gilligan CA; Bolker BM
    Stat Methods Med Res; 1995 Jun; 4(2):160-83. PubMed ID: 7582203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation models for childhood epidemics.
    Keeling MJ; Rand DA; Morris AJ
    Proc Biol Sci; 1997 Aug; 264(1385):1149-56. PubMed ID: 9308191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First principles modeling of nonlinear incidence rates in seasonal epidemics.
    Ponciano JM; Capistrán MA
    PLoS Comput Biol; 2011 Feb; 7(2):e1001079. PubMed ID: 21379320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Edge-Based Model of SEIR Epidemics on Static Random Networks.
    Alota CP; Pilar-Arceo CPC; de Los Reyes V AA
    Bull Math Biol; 2020 Jul; 82(7):96. PubMed ID: 32676740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The probability of epidemic burnout in the stochastic SIR model with vital dynamics.
    Parsons TL; Bolker BM; Dushoff J; Earn DJD
    Proc Natl Acad Sci U S A; 2024 Jan; 121(5):e2313708120. PubMed ID: 38277438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaussian process approximations for fast inference from infectious disease data.
    Buckingham-Jeffery E; Isham V; House T
    Math Biosci; 2018 Jul; 301():111-120. PubMed ID: 29471011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic epidemics: the expected duration of the endemic period in higher dimensional models.
    Grasman J
    Math Biosci; 1998 Aug; 152(1):13-27. PubMed ID: 9727295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applicability of time fractional derivative models for simulating the dynamics and mitigation scenarios of COVID-19.
    Zhang Y; Yu X; Sun H; Tick GR; Wei W; Jin B
    Chaos Solitons Fractals; 2020 Sep; 138():109959. PubMed ID: 32834580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractional kinetics in multi-compartmental systems.
    Dokoumetzidis A; Magin R; Macheras P
    J Pharmacokinet Pharmacodyn; 2010 Oct; 37(5):507-24. PubMed ID: 20886267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving pairwise approximations for network models with susceptible-infected-susceptible dynamics.
    Leng T; Keeling MJ
    J Theor Biol; 2020 Sep; 500():110328. PubMed ID: 32454058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A note on the stationary distribution of stochastic SEIR epidemic model with saturated incidence rate.
    Han Q; Chen L; Jiang D
    Sci Rep; 2017 Jun; 7(1):3996. PubMed ID: 28638046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.