These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 32197580)
1. Standard machine learning approaches outperform deep representation learning on phenotype prediction from transcriptomics data. Smith AM; Walsh JR; Long J; Davis CB; Henstock P; Hodge MR; Maciejewski M; Mu XJ; Ra S; Zhao S; Ziemek D; Fisher CK BMC Bioinformatics; 2020 Mar; 21(1):119. PubMed ID: 32197580 [TBL] [Abstract][Full Text] [Related]
2. Genomic prediction using machine learning: a comparison of the performance of regularized regression, ensemble, instance-based and deep learning methods on synthetic and empirical data. Lourenço VM; Ogutu JO; Rodrigues RAP; Posekany A; Piepho HP BMC Genomics; 2024 Feb; 25(1):152. PubMed ID: 38326768 [TBL] [Abstract][Full Text] [Related]
3. Weakly Semi-supervised phenotyping using Electronic Health records. Nogues IE; Wen J; Lin Y; Liu M; Tedeschi SK; Geva A; Cai T; Hong C J Biomed Inform; 2022 Oct; 134():104175. PubMed ID: 36064111 [TBL] [Abstract][Full Text] [Related]
4. Batch normalization followed by merging is powerful for phenotype prediction integrating multiple heterogeneous studies. Gao Y; Sun F PLoS Comput Biol; 2023 Oct; 19(10):e1010608. PubMed ID: 37844077 [TBL] [Abstract][Full Text] [Related]
5. Biological classification with RNA-seq data: Can alternatively spliced transcript expression enhance machine learning classifiers? Johnson NT; Dhroso A; Hughes KJ; Korkin D RNA; 2018 Sep; 24(9):1119-1132. PubMed ID: 29941426 [TBL] [Abstract][Full Text] [Related]
6. Robust identification of molecular phenotypes using semi-supervised learning. Roder H; Oliveira C; Net L; Linstid B; Tsypin M; Roder J BMC Bioinformatics; 2019 May; 20(1):273. PubMed ID: 31138112 [TBL] [Abstract][Full Text] [Related]
7. A semi-supervised deep learning method based on stacked sparse auto-encoder for cancer prediction using RNA-seq data. Xiao Y; Wu J; Lin Z; Zhao X Comput Methods Programs Biomed; 2018 Nov; 166():99-105. PubMed ID: 30415723 [TBL] [Abstract][Full Text] [Related]
8. Robust evaluation of deep learning-based representation methods for survival and gene essentiality prediction on bulk RNA-seq data. Gross B; Dauvin A; Cabeli V; Kmetzsch V; El Khoury J; Dissez G; Ouardini K; Grouard S; Davi A; Loeb R; Esposito C; Hulot L; Ghermi R; Blum M; Darhi Y; Durand EY; Romagnoni A Sci Rep; 2024 Jul; 14(1):17064. PubMed ID: 39048590 [TBL] [Abstract][Full Text] [Related]
9. Deep learning of 2D-Restructured gene expression representations for improved low-sample therapeutic response prediction. Cheng KP; Shen WX; Jiang YY; Chen Y; Chen YZ; Tan Y Comput Biol Med; 2023 Sep; 164():107245. PubMed ID: 37480677 [TBL] [Abstract][Full Text] [Related]
10. Assessment of deep learning and transfer learning for cancer prediction based on gene expression data. Hanczar B; Bourgeais V; Zehraoui F BMC Bioinformatics; 2022 Jul; 23(1):262. PubMed ID: 35786378 [TBL] [Abstract][Full Text] [Related]
11. Machine Learning Analysis of RNA-seq Data for Diagnostic and Prognostic Prediction of Colon Cancer. Bostanci E; Kocak E; Unal M; Guzel MS; Acici K; Asuroglu T Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991790 [TBL] [Abstract][Full Text] [Related]
12. How does normalization impact RNA-seq disease diagnosis? Han H; Men K J Biomed Inform; 2018 Sep; 85():80-92. PubMed ID: 30041017 [TBL] [Abstract][Full Text] [Related]
13. Combining structured and unstructured data for predictive models: a deep learning approach. Zhang D; Yin C; Zeng J; Yuan X; Zhang P BMC Med Inform Decis Mak; 2020 Oct; 20(1):280. PubMed ID: 33121479 [TBL] [Abstract][Full Text] [Related]
14. Systematic evaluation of supervised machine learning for sample origin prediction using metagenomic sequencing data. Chen JC; Tyler AD Biol Direct; 2020 Dec; 15(1):29. PubMed ID: 33302990 [TBL] [Abstract][Full Text] [Related]
15. Enhancing the prediction of IDC breast cancer staging from gene expression profiles using hybrid feature selection methods and deep learning architecture. Kishore A; Venkataramana L; Prasad DVV; Mohan A; Jha B Med Biol Eng Comput; 2023 Nov; 61(11):2895-2919. PubMed ID: 37530887 [TBL] [Abstract][Full Text] [Related]
17. Machine learning models outperform deep learning models, provide interpretation and facilitate feature selection for soybean trait prediction. Gill M; Anderson R; Hu H; Bennamoun M; Petereit J; Valliyodan B; Nguyen HT; Batley J; Bayer PE; Edwards D BMC Plant Biol; 2022 Apr; 22(1):180. PubMed ID: 35395721 [TBL] [Abstract][Full Text] [Related]
18. Evaluating the performance of machine learning methods and variable selection methods for predicting difficult-to-measure traits in Holstein dairy cattle using milk infrared spectral data. Mota LFM; Pegolo S; Baba T; Peñagaricano F; Morota G; Bittante G; Cecchinato A J Dairy Sci; 2021 Jul; 104(7):8107-8121. PubMed ID: 33865589 [TBL] [Abstract][Full Text] [Related]
19. Benchmarking of analytical combinations for COVID-19 outcome prediction using single-cell RNA sequencing data. Cao Y; Ghazanfar S; Yang P; Yang J Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37096588 [TBL] [Abstract][Full Text] [Related]
20. Deep learning prediction of chemical-induced dose-dependent and context-specific multiplex phenotype responses and its application to personalized alzheimer's disease drug repurposing. Wu Y; Liu Q; Qiu Y; Xie L PLoS Comput Biol; 2022 Aug; 18(8):e1010367. PubMed ID: 35951653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]