BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32197580)

  • 41. An elastic-net logistic regression approach to generate classifiers and gene signatures for types of immune cells and T helper cell subsets.
    Torang A; Gupta P; Klinke DJ
    BMC Bioinformatics; 2019 Aug; 20(1):433. PubMed ID: 31438843
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Machine learning, the kidney, and genotype-phenotype analysis.
    Sealfon RSG; Mariani LH; Kretzler M; Troyanskaya OG
    Kidney Int; 2020 Jun; 97(6):1141-1149. PubMed ID: 32359808
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of Deep Learning and Classical Machine Learning Algorithms to Predict Postoperative Outcomes for Anterior Cervical Discectomy and Fusion Procedures With State-of-the-art Performance.
    Rodrigues AJ; Schonfeld E; Varshneya K; Stienen MN; Staartjes VE; Jin MC; Veeravagu A
    Spine (Phila Pa 1976); 2022 Dec; 47(23):1637-1644. PubMed ID: 36149852
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Benchmarking deep learning models on large healthcare datasets.
    Purushotham S; Meng C; Che Z; Liu Y
    J Biomed Inform; 2018 Jul; 83():112-134. PubMed ID: 29879470
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of classification and forecasting methods on time series gene expression data.
    Tripto NI; Kabir M; Bayzid MS; Rahman A
    PLoS One; 2020; 15(11):e0241686. PubMed ID: 33156855
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multi-class motor imagery EEG classification using collaborative representation-based semi-supervised extreme learning machine.
    She Q; Zou J; Luo Z; Nguyen T; Li R; Zhang Y
    Med Biol Eng Comput; 2020 Sep; 58(9):2119-2130. PubMed ID: 32676841
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review.
    Buchlak QD; Esmaili N; Leveque JC; Farrokhi F; Bennett C; Piccardi M; Sethi RK
    Neurosurg Rev; 2020 Oct; 43(5):1235-1253. PubMed ID: 31422572
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Machine learning and deep learning methods that use omics data for metastasis prediction.
    Albaradei S; Thafar M; Alsaedi A; Van Neste C; Gojobori T; Essack M; Gao X
    Comput Struct Biotechnol J; 2021; 19():5008-5018. PubMed ID: 34589181
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selecting precise reference normal tissue samples for cancer research using a deep learning approach.
    Zeng WZD; Glicksberg BS; Li Y; Chen B
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):21. PubMed ID: 30704474
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comprehensive study of semi-supervised learning for DNA methylation-based supervised classification of central nervous system tumors.
    Tran QT; Alom MZ; Orr BA
    BMC Bioinformatics; 2022 Jun; 23(1):223. PubMed ID: 35676649
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Unsupervised and self-supervised deep learning approaches for biomedical text mining.
    Nadif M; Role F
    Brief Bioinform; 2021 Mar; 22(2):1592-1603. PubMed ID: 33569575
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lung cancer survival period prediction and understanding: Deep learning approaches.
    Doppalapudi S; Qiu RG; Badr Y
    Int J Med Inform; 2021 Apr; 148():104371. PubMed ID: 33461009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel prediction models for genotoxicity based on biomarker genes in human HepaRG™ cells.
    Thienpont A; Verhulst S; Van Grunsven LA; Rogiers V; Vanhaecke T; Mertens B
    ALTEX; 2023; 40(2):271-286. PubMed ID: 36343114
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deep learning-based framework for slide-based histopathological image analysis.
    Kosaraju S; Park J; Lee H; Yang JW; Kang M
    Sci Rep; 2022 Nov; 12(1):19075. PubMed ID: 36351997
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gene-based microbiome representation enhances host phenotype classification.
    Deschênes T; Tohoundjona FWE; Plante PL; Di Marzo V; Raymond F
    mSystems; 2023 Aug; 8(4):e0053123. PubMed ID: 37404032
    [TBL] [Abstract][Full Text] [Related]  

  • 56. scDeepInsight: a supervised cell-type identification method for scRNA-seq data with deep learning.
    Jia S; Lysenko A; Boroevich KA; Sharma A; Tsunoda T
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37523217
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data.
    Takahashi S; Asada K; Takasawa K; Shimoyama R; Sakai A; Bolatkan A; Shinkai N; Kobayashi K; Komatsu M; Kaneko S; Sese J; Hamamoto R
    Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33086649
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Architectures and accuracy of artificial neural network for disease classification from omics data.
    Yu H; Samuels DC; Zhao YY; Guo Y
    BMC Genomics; 2019 Mar; 20(1):167. PubMed ID: 30832569
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent advances and clinical applications of deep learning in medical image analysis.
    Chen X; Wang X; Zhang K; Fung KM; Thai TC; Moore K; Mannel RS; Liu H; Zheng B; Qiu Y
    Med Image Anal; 2022 Jul; 79():102444. PubMed ID: 35472844
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cross-platform normalization of microarray and RNA-seq data for machine learning applications.
    Thompson JA; Tan J; Greene CS
    PeerJ; 2016; 4():e1621. PubMed ID: 26844019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.