These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 32197676)
1. PeBiToSens™: A Platform for PBT Screening of Fragrance Ingredients Without Animal Testing. Laue H; Hostettler L; Sanders G; Kreutzer G; Natsch A Chimia (Aarau); 2020 Mar; 74(3):168-175. PubMed ID: 32197676 [TBL] [Abstract][Full Text] [Related]
2. Accurate prediction of acute fish toxicity of fragrance chemicals with the RTgill-W1 cell assay. Natsch A; Laue H; Haupt T; von Niederhäusern V; Sanders G Environ Toxicol Chem; 2018 Mar; 37(3):931-941. PubMed ID: 29105821 [TBL] [Abstract][Full Text] [Related]
3. Predicting the bioconcentration of fragrance ingredients by rainbow trout using measured rates of in vitro intrinsic clearance. Laue H; Gfeller H; Jenner KJ; Nichols JW; Kern S; Natsch A Environ Sci Technol; 2014 Aug; 48(16):9486-95. PubMed ID: 25058173 [TBL] [Abstract][Full Text] [Related]
4. In Vitro Biotransformation Assays Using Liver S9 Fractions and Hepatocytes from Rainbow Trout (Oncorhynchus mykiss): Overcoming Challenges with Difficult to Test Fragrance Chemicals. Kropf C; Begnaud F; Gimeno S; Berthaud F; Debonneville C; Segner H Environ Toxicol Chem; 2020 Dec; 39(12):2396-2408. PubMed ID: 32915480 [TBL] [Abstract][Full Text] [Related]
5. Extending the concept of predicting fish acute toxicity in vitro to the intestinal cell line RTgutGC. Schug H; Maner J; Hülskamp M; Begnaud F; Debonneville C; Berthaud F; Gimeno S; Schirmer K ALTEX; 2020; 37(1):37-46. PubMed ID: 31295352 [TBL] [Abstract][Full Text] [Related]
6. The state of in vitro science for use in bioaccumulation assessments for fish. Weisbrod AV; Sahi J; Segner H; James MO; Nichols J; Schultz I; Erhardt S; Cowan-Ellsberry C; Bonnell M; Hoeger B Environ Toxicol Chem; 2009 Jan; 28(1):86-96. PubMed ID: 18717614 [TBL] [Abstract][Full Text] [Related]
7. Ecotoxicological characterisation and classification of existing chemicals. Examples from the ICCA HPV initiative and comparison with other existing chemicals. Licht O; Weyers A; Nagel R Environ Sci Pollut Res Int; 2004; 11(5):291-6. PubMed ID: 15506630 [TBL] [Abstract][Full Text] [Related]
8. In vitro and in vivo metabolic stability of various fragrance materials and insect repellent in rainbow trout (Oncorhynchus mykiss). Weeks J; Guiney P; Johanning K J Appl Toxicol; 2020 Jun; 40(6):763-779. PubMed ID: 31925820 [TBL] [Abstract][Full Text] [Related]
9. Examining Uncertainty in In Vitro-In Vivo Extrapolation Applied in Fish Bioconcentration Models. Laue H; Hostettler L; Badertscher RP; Jenner KJ; Sanders G; Arnot JA; Natsch A Environ Sci Technol; 2020 Aug; 54(15):9483-9494. PubMed ID: 32633948 [TBL] [Abstract][Full Text] [Related]
10. Bioaccumulation Screening of Neutral Hydrophobic Organic Chemicals in Air-Breathing Organisms Using In Vitro Rat Liver S9 Biotransformation Assays. Lee YS; Cole TR; Jhutty MS; Cantu MA; Chee B; Stelmaschuk SC; Gobas FAPC Environ Toxicol Chem; 2022 Oct; 41(10):2565-2579. PubMed ID: 35856879 [TBL] [Abstract][Full Text] [Related]
11. New insights on in vitro biotransformation of anticoagulant rodenticides in fish. Regnery J; Riegraf C; Jacob S; Friesen A Chemosphere; 2022 May; 294():133727. PubMed ID: 35085616 [TBL] [Abstract][Full Text] [Related]
13. Bioconcentration Assessment in Fish Based on In Vitro Intrinsic Clearance: Predictivity of an Empirical Model Compared to In Vitro-In Vivo Extrapolation Models. Laue H; Hostettler L; Jenner KJ; Sanders G; Natsch A Environ Sci Technol; 2023 Sep; 57(36):13325-13335. PubMed ID: 37643004 [TBL] [Abstract][Full Text] [Related]
14. In Vivo Biotransformation Rates of Organic Chemicals in Fish: Relationship with Bioconcentration and Biomagnification Factors. Lo JC; Letinski DJ; Parkerton TF; Campbell DA; Gobas FA Environ Sci Technol; 2016 Dec; 50(24):13299-13308. PubMed ID: 27993034 [TBL] [Abstract][Full Text] [Related]
15. Modernizing persistence-bioaccumulation-toxicity (PBT) assessment with high throughput animal-free methods. Escher BI; Altenburger R; Blüher M; Colbourne JK; Ebinghaus R; Fantke P; Hein M; Köck W; Kümmerer K; Leipold S; Li X; Scheringer M; Scholz S; Schloter M; Schweizer PJ; Tal T; Tetko I; Traidl-Hoffmann C; Wick LY; Fenner K Arch Toxicol; 2023 May; 97(5):1267-1283. PubMed ID: 36952002 [TBL] [Abstract][Full Text] [Related]
16. Somatic and gastrointestinal in vivo biotransformation rates of hydrophobic chemicals in fish. Lo JC; Campbell DA; Kennedy CJ; Gobas FA Environ Toxicol Chem; 2015 Oct; 34(10):2282-94. PubMed ID: 25939596 [TBL] [Abstract][Full Text] [Related]
17. Biotransformation of Benzo[ a]pyrene by Three Rainbow Trout ( Onchorhynchus mykiss) Cell Lines and Extrapolation To Derive a Fish Bioconcentration Factor. Stadnicka-Michalak J; Weiss FT; Fischer M; Tanneberger K; Schirmer K Environ Sci Technol; 2018 Mar; 52(5):3091-3100. PubMed ID: 29400055 [TBL] [Abstract][Full Text] [Related]
18. In vitro to in vivo extrapolation of biotransformation rates for assessing bioaccumulation of hydrophobic organic chemicals in mammals. Lee YS; Lo JC; Otton SV; Moore MM; Kennedy CJ; Gobas FAPC Environ Toxicol Chem; 2017 Jul; 36(7):1934-1946. PubMed ID: 28000964 [TBL] [Abstract][Full Text] [Related]
19. Concentration dependence of biotransformation in fish liver S9: Optimizing substrate concentrations to estimate hepatic clearance for bioaccumulation assessment. Lo JC; Allard GN; Otton SV; Campbell DA; Gobas FA Environ Toxicol Chem; 2015 Dec; 34(12):2782-90. PubMed ID: 26077187 [TBL] [Abstract][Full Text] [Related]
20. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]