These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 32198035)

  • 1. Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration.
    Samadian H; Maleki H; Fathollahi A; Salehi M; Gholizadeh S; Derakhshankhah H; Allahyari Z; Jaymand M
    Int J Biol Macromol; 2020 Jul; 154():795-817. PubMed ID: 32198035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects.
    Lin T; Liu S; Chen S; Qiu S; Rao Z; Liu J; Zhu S; Yan L; Mao H; Zhu Q; Quan D; Liu X
    Acta Biomater; 2018 Jun; 73():326-338. PubMed ID: 29649641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering?
    Abbasian M; Massoumi B; Mohammad-Rezaei R; Samadian H; Jaymand M
    Int J Biol Macromol; 2019 Aug; 134():673-694. PubMed ID: 31054302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering peripheral nerve repair.
    Marquardt LM; Sakiyama-Elbert SE
    Curr Opin Biotechnol; 2013 Oct; 24(5):887-92. PubMed ID: 23790730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaffolds for peripheral nerve repair and reconstruction.
    Yi S; Xu L; Gu X
    Exp Neurol; 2019 Sep; 319():112761. PubMed ID: 29772248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injectable systems and implantable conduits for peripheral nerve repair.
    Lin YC; Marra KG
    Biomed Mater; 2012 Apr; 7(2):024102. PubMed ID: 22456722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Strategies in Tissue Engineering for Guided Peripheral Nerve Regeneration.
    Belanger K; Dinis TM; Taourirt S; Vidal G; Kaplan DL; Egles C
    Macromol Biosci; 2016 Apr; 16(4):472-81. PubMed ID: 26748820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alginate-Based Hydrogels and Tubes, as Biological Macromolecule-Based Platforms for Peripheral Nerve Tissue Engineering: A Review.
    Abdelbasset WK; Jasim SA; Sharma SK; Margiana R; Bokov DO; Obaid MA; Hussein BA; Lafta HA; Jasim SF; Mustafa YF
    Ann Biomed Eng; 2022 Jun; 50(6):628-653. PubMed ID: 35446001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrices, scaffolds & carriers for cell delivery in nerve regeneration.
    Wang ZZ; Sakiyama-Elbert SE
    Exp Neurol; 2019 Sep; 319():112837. PubMed ID: 30291854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatible hydrogels in spinal cord injury repair.
    Hejcl A; Lesný P; Prádný M; Michálek J; Jendelová P; Stulík J; Syková E
    Physiol Res; 2008; 57 Suppl 3():S121-S132. PubMed ID: 18481908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alginate Hydrogels as Scaffolds and Delivery Systems to Repair the Damaged Spinal Cord.
    Grijalvo S; Nieto-Díaz M; Maza RM; Eritja R; Díaz DD
    Biotechnol J; 2019 Dec; 14(12):e1900275. PubMed ID: 31677223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue Engineering Strategies for Osteochondral Repair.
    Maia FR; Carvalho MR; Oliveira JM; Reis RL
    Adv Exp Med Biol; 2018; 1059():353-371. PubMed ID: 29736582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent trends in peripheral nervous regeneration using 3D biomaterials.
    Ashraf R; Sofi HS; Beigh MA; Sheikh FA
    Tissue Cell; 2019 Aug; 59():70-81. PubMed ID: 31383291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repairing Peripheral Nerves: Is there a Role for Carbon Nanotubes?
    Oprych KM; Whitby RL; Mikhalovsky SV; Tomlins P; Adu J
    Adv Healthc Mater; 2016 Jun; 5(11):1253-71. PubMed ID: 27027923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The advances in nerve tissue engineering: From fabrication of nerve conduit to in vivo nerve regeneration assays.
    Jahromi M; Razavi S; Bakhtiari A
    J Tissue Eng Regen Med; 2019 Nov; 13(11):2077-2100. PubMed ID: 31350868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered hydrogels for peripheral nerve repair.
    Liu Y; Zhang X; Xiao C; Liu B
    Mater Today Bio; 2023 Jun; 20():100668. PubMed ID: 37273791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration.
    Carvalho CR; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2020; 1249():173-201. PubMed ID: 32602098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural tissue engineering options for peripheral nerve regeneration.
    Gu X; Ding F; Williams DF
    Biomaterials; 2014 Aug; 35(24):6143-56. PubMed ID: 24818883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Progress on application of hydrogels in the field of peripheral nerve injury repair].
    Qin C; Kong LT; Xu SG
    Zhongguo Gu Shang; 2024 Jun; 37(6):6295-34. PubMed ID: 38910389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft matter polysaccharide-based hydrogels as versatile bioengineered platforms for brain tissue repair and regeneration.
    Carvalho IC; Mansur HS; Leonel AG; Mansur AAP; Lobato ZIP
    Int J Biol Macromol; 2021 Jul; 182():1091-1111. PubMed ID: 33892028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.