BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 32198115)

  • 1. Bioinformatic Analysis of the Flavin-Dependent Amine Oxidase Superfamily: Adaptations for Substrate Specificity and Catalytic Diversity.
    Tararina MA; Allen KN
    J Mol Biol; 2020 May; 432(10):3269-3288. PubMed ID: 32198115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Analysis Provides Mechanistic Insight into Nicotine Oxidoreductase from Pseudomonas putida.
    Tararina MA; Janda KD; Allen KN
    Biochemistry; 2016 Dec; 55(48):6595-6598. PubMed ID: 27933790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative cyclization of
    Lahham M; Pavkov-Keller T; Fuchs M; Niederhauser J; Chalhoub G; Daniel B; Kroutil W; Gruber K; Macheroux P
    J Biol Chem; 2018 Nov; 293(44):17021-17032. PubMed ID: 30194285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of monoamine oxidase from Aspergillus niger provides a molecular context for improvements in activity obtained by directed evolution.
    Atkin KE; Reiss R; Koehler V; Bailey KR; Hart S; Turkenburg JP; Turner NJ; Brzozowski AM; Grogan G
    J Mol Biol; 2008 Dec; 384(5):1218-31. PubMed ID: 18951902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Insights into the Substrate Range of a Bacterial Monoamine Oxidase.
    Muellers SN; Tararina MA; Kuzmanovic U; Galagan JE; Allen KN
    Biochemistry; 2023 Feb; 62(3):851-862. PubMed ID: 36662673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional role of the "aromatic cage" in human monoamine oxidase B: structures and catalytic properties of Tyr435 mutant proteins.
    Li M; Binda C; Mattevi A; Edmondson DE
    Biochemistry; 2006 Apr; 45(15):4775-84. PubMed ID: 16605246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes.
    Burroughs AM; Allen KN; Dunaway-Mariano D; Aravind L
    J Mol Biol; 2006 Sep; 361(5):1003-34. PubMed ID: 16889794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic Studies of an Amine Oxidase Derived from d-Amino Acid Oxidase.
    Trimmer EE; Wanninayake US; Fitzpatrick PF
    Biochemistry; 2017 Apr; 56(14):2024-2030. PubMed ID: 28355481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based redesign of cofactor binding in putrescine oxidase.
    Kopacz MM; Rovida S; van Duijn E; Fraaije MW; Mattevi A
    Biochemistry; 2011 May; 50(19):4209-17. PubMed ID: 21486042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative computational investigation on the proton and hydride transfer mechanisms of monoamine oxidase using model molecules.
    Atalay VE; Erdem SS
    Comput Biol Chem; 2013 Dec; 47():181-91. PubMed ID: 24121676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycoconjugate pathway connections revealed by sequence similarity network analysis of the monotopic phosphoglycosyl transferases.
    O'Toole KH; Imperiali B; Allen KN
    Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33472976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FAD-binding site and NADP reactivity in human renalase: a new enzyme involved in blood pressure regulation.
    Milani M; Ciriello F; Baroni S; Pandini V; Canevari G; Bolognesi M; Aliverti A
    J Mol Biol; 2011 Aug; 411(2):463-73. PubMed ID: 21699903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine residues near the FAD binding site are critical for FAD binding and for the maintenance of the stable and active conformation of rat monoamine oxidase A.
    Ma J; Ito A
    J Biochem; 2002 Jan; 131(1):107-11. PubMed ID: 11754741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae: BIOCHEMICAL, STRUCTURAL, AND EVOLUTIONARY INSIGHTS.
    Kuznetsova E; Nocek B; Brown G; Makarova KS; Flick R; Wolf YI; Khusnutdinova A; Evdokimova E; Jin K; Tan K; Hanson AD; Hasnain G; Zallot R; de Crécy-Lagard V; Babu M; Savchenko A; Joachimiak A; Edwards AM; Koonin EV; Yakunin AF
    J Biol Chem; 2015 Jul; 290(30):18678-98. PubMed ID: 26071590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amine oxidases from Aspergillus niger: identification of a novel flavin-dependent enzyme.
    Schilling B; Lerch K
    Biochim Biophys Acta; 1995 Apr; 1243(3):529-37. PubMed ID: 7727530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 30-angstrom-long U-shaped catalytic tunnel in the crystal structure of polyamine oxidase.
    Binda C; Coda A; Angelini R; Federico R; Ascenzi P; Mattevi A
    Structure; 1999 Mar; 7(3):265-76. PubMed ID: 10368296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of function in the "two dinucleotide binding domains" flavoproteins.
    Ojha S; Meng EC; Babbitt PC
    PLoS Comput Biol; 2007 Jul; 3(7):e121. PubMed ID: 17658942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenesis at a highly conserved tyrosine in monoamine oxidase B affects FAD incorporation and catalytic activity.
    Zhou BP; Lewis DA; Kwan SW; Kirksey TJ; Abell CW
    Biochemistry; 1995 Jul; 34(29):9526-31. PubMed ID: 7626622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of amines by flavoproteins.
    Fitzpatrick PF
    Arch Biochem Biophys; 2010 Jan; 493(1):13-25. PubMed ID: 19651103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A global view of structure-function relationships in the tautomerase superfamily.
    Davidson R; Baas BJ; Akiva E; Holliday GL; Polacco BJ; LeVieux JA; Pullara CR; Zhang YJ; Whitman CP; Babbitt PC
    J Biol Chem; 2018 Feb; 293(7):2342-2357. PubMed ID: 29184004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.