These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 32198115)

  • 21. Crystallographic snapshots of the complete reaction cycle of nicotine degradation by an amine oxidase of the monoamine oxidase (MAO) family.
    Kachalova G; Decker K; Holt A; Bartunik HD
    Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4800-5. PubMed ID: 21383134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atlas of the Radical SAM Superfamily: Divergent Evolution of Function Using a "Plug and Play" Domain.
    Holliday GL; Akiva E; Meng EC; Brown SD; Calhoun S; Pieper U; Sali A; Booker SJ; Babbitt PC
    Methods Enzymol; 2018; 606():1-71. PubMed ID: 30097089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders.
    Binda C; Newton-Vinson P; Hubálek F; Edmondson DE; Mattevi A
    Nat Struct Biol; 2002 Jan; 9(1):22-6. PubMed ID: 11753429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alteration in spectral properties on ligand binding reveals flexibility in monoamine oxidase.
    Ramsay RR; Jones TZ; Hynson RM
    Med Sci Monit; 2005 Sep; 11(9):SR15-20. PubMed ID: 16127378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loss of serotonin oxidation as a component of the altered substrate specificity in the Y444F mutant of recombinant human liver MAO A.
    Nandigama RK; Miller JR; Edmondson DE
    Biochemistry; 2001 Dec; 40(49):14839-46. PubMed ID: 11732903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The structure of a bacterial L-amino acid oxidase from Rhodococcus opacus gives new evidence for the hydride mechanism for dehydrogenation.
    Faust A; Niefind K; Hummel W; Schomburg D
    J Mol Biol; 2007 Mar; 367(1):234-48. PubMed ID: 17234209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidative opening of the aromatic ring: Tracing the natural history of a large superfamily of dioxygenase domains and their relatives.
    Burroughs AM; Glasner ME; Barry KP; Taylor EA; Aravind L
    J Biol Chem; 2019 Jun; 294(26):10211-10235. PubMed ID: 31092555
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diversity, taxonomy and evolution of medium-chain dehydrogenase/reductase superfamily.
    Riveros-Rosas H; Julián-Sánchez A; Villalobos-Molina R; Pardo JP; Piña E
    Eur J Biochem; 2003 Aug; 270(16):3309-34. PubMed ID: 12899689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ONIOM calculations on serotonin degradation by monoamine oxidase B: insight into the oxidation mechanism and covalent reversible inhibition.
    Cakir K; Erdem SS; Atalay VE
    Org Biomol Chem; 2016 Oct; 14(39):9239-9252. PubMed ID: 27605388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure-activity relationships in the oxidation of para-substituted benzylamine analogues by recombinant human liver monoamine oxidase A.
    Miller JR; Edmondson DE
    Biochemistry; 1999 Oct; 38(41):13670-83. PubMed ID: 10521274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of carboxyl-terminal truncations on the activity and solubility of human monoamine oxidase B.
    Rebrin I; Geha RM; Chen K; Shih JC
    J Biol Chem; 2001 Aug; 276(31):29499-506. PubMed ID: 11371556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A key amino acid responsible for substrate selectivity of monoamine oxidase A and B.
    Tsugeno Y; Ito A
    J Biol Chem; 1997 May; 272(22):14033-6. PubMed ID: 9162023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Common Structural Core of Three-Dozen Residues Reveals Intersuperfamily Relationships.
    Mönttinen HA; Ravantti JJ; Poranen MM
    Mol Biol Evol; 2016 Jul; 33(7):1697-710. PubMed ID: 26931141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Empirical valence bond simulations of the hydride transfer step in the monoamine oxidase B catalyzed metabolism of dopamine.
    Repič M; Vianello R; Purg M; Duarte F; Bauer P; Kamerlin SC; Mavri J
    Proteins; 2014 Dec; 82(12):3347-55. PubMed ID: 25220264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome scale prediction of substrate specificity for acyl adenylate superfamily of enzymes based on active site residue profiles.
    Khurana P; Gokhale RS; Mohanty D
    BMC Bioinformatics; 2010 Jan; 11():57. PubMed ID: 20105319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Divergent evolution of the thiolase superfamily and chalcone synthase family.
    Jiang C; Kim SY; Suh DY
    Mol Phylogenet Evol; 2008 Dec; 49(3):691-701. PubMed ID: 18824113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for Posttranslational Protein Flavinylation in the Syphilis Spirochete Treponema pallidum: Structural and Biochemical Insights from the Catalytic Core of a Periplasmic Flavin-Trafficking Protein.
    Deka RK; Brautigam CA; Liu WZ; Tomchick DR; Norgard MV
    mBio; 2015 May; 6(3):e00519-15. PubMed ID: 25944861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational changes in monoamine oxidase A in response to ligand binding or reduction.
    Hynson RM; Kelly SM; Price NC; Ramsay RR
    Biochim Biophys Acta; 2004 Apr; 1672(1):60-6. PubMed ID: 15056494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Mechanistic study of monoamine oxidase: significance for MAO A and MAO B in situ].
    Ramsay RR
    Vopr Med Khim; 1997; 43(6):457-70. PubMed ID: 9503563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification, cloning, and three-dimensional structure prediction of Micrococcus luteus FAD-containing tyramine oxidase.
    Roh JH; Wouters J; Depiereux E; Yukawa H; Inui M; Minami H; Suzuki H; Kumagai H
    Biochem Biophys Res Commun; 2000 Feb; 268(2):293-7. PubMed ID: 10679196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.