These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 32198395)
1. Resistance of seagrass habitats to ocean acidification via altered interactions in a tri-trophic chain. Martínez-Crego B; Vizzini S; Califano G; Massa-Gallucci A; Andolina C; Gambi MC; Santos R Sci Rep; 2020 Mar; 10(1):5103. PubMed ID: 32198395 [TBL] [Abstract][Full Text] [Related]
2. Altered epiphyte community and sea urchin diet in Posidonia oceanica meadows in the vicinity of volcanic CO Nogueira P; Gambi MC; Vizzini S; Califano G; Tavares AM; Santos R; Martínez-Crego B Mar Environ Res; 2017 Jun; 127():102-111. PubMed ID: 28413104 [TBL] [Abstract][Full Text] [Related]
3. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660 [TBL] [Abstract][Full Text] [Related]
4. Boosted fish abundance associated with Posidonia oceanica meadows in temperate shallow CO Mirasole A; Badalamenti F; Di Franco A; Gambi MC; Teixidó N Sci Total Environ; 2021 Jun; 771():145438. PubMed ID: 33548697 [TBL] [Abstract][Full Text] [Related]
5. Resilient consumers accelerate the plant decomposition in a naturally acidified seagrass ecosystem. Lee J; Gambi MC; Kroeker KJ; Munari M; Peay K; Micheli F Glob Chang Biol; 2022 Aug; 28(15):4558-4576. PubMed ID: 35583009 [TBL] [Abstract][Full Text] [Related]
6. Contrasting effects of ocean warming on different components of plant-herbivore interactions. Pagès JF; Smith TM; Tomas F; Sanmartí N; Boada J; De Bari H; Pérez M; Romero J; Arthur R; Alcoverro T Mar Pollut Bull; 2018 Sep; 134():55-65. PubMed ID: 29074253 [TBL] [Abstract][Full Text] [Related]
7. Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidification. Guilini K; Weber M; de Beer D; Schneider M; Molari M; Lott C; Bodnar W; Mascart T; De Troch M; Vanreusel A PLoS One; 2017; 12(8):e0181531. PubMed ID: 28792960 [TBL] [Abstract][Full Text] [Related]
8. From Individual Calcifiers to Ecosystem Dynamics: Ocean Acidification Effects on Urchins and Abalone. deVries MS; Ly N; Ebner C; Hallisey R Integr Comp Biol; 2024 Sep; 64(2):290-305. PubMed ID: 38986515 [TBL] [Abstract][Full Text] [Related]
9. In situ developmental responses of tropical sea urchin larvae to ocean acidification conditions at naturally elevated pCO2 vent sites. Lamare MD; Liddy M; Uthicke S Proc Biol Sci; 2016 Nov; 283(1843):. PubMed ID: 27903867 [TBL] [Abstract][Full Text] [Related]
10. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species. Hernán G; Ortega MJ; Gándara AM; Castejón I; Terrados J; Tomas F Glob Chang Biol; 2017 Nov; 23(11):4530-4543. PubMed ID: 28544549 [TBL] [Abstract][Full Text] [Related]
11. Hidden cost of pH variability in seagrass beds on marine calcifiers under ocean acidification. Cossa D; Infantes E; Dupont S Sci Total Environ; 2024 Mar; 915():170169. PubMed ID: 38244616 [TBL] [Abstract][Full Text] [Related]
13. Decreased pH impairs sea urchin resistance to predatory fish: A combined laboratory-field study to understand the fate of top-down processes in future oceans. Asnaghi V; Chindris A; Leggieri F; Scolamacchia M; Brundu G; Guala I; Loi B; Chiantore M; Farina S Mar Environ Res; 2020 Dec; 162():105194. PubMed ID: 33126114 [TBL] [Abstract][Full Text] [Related]
14. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients. Sampaio E; Rodil IF; Vaz-Pinto F; Fernández A; Arenas F Mar Environ Res; 2017 Apr; 125():25-33. PubMed ID: 28088495 [TBL] [Abstract][Full Text] [Related]
15. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO Pacella SR; Brown CA; Waldbusser GG; Labiosa RG; Hales B Proc Natl Acad Sci U S A; 2018 Apr; 115(15):3870-3875. PubMed ID: 29610330 [TBL] [Abstract][Full Text] [Related]
16. Living in future ocean acidification, physiological adaptive responses of the immune system of sea urchins resident at a CO Migliaccio O; Pinsino A; Maffioli E; Smith AM; Agnisola C; Matranga V; Nonnis S; Tedeschi G; Byrne M; Gambi MC; Palumbo A Sci Total Environ; 2019 Jul; 672():938-950. PubMed ID: 30981169 [TBL] [Abstract][Full Text] [Related]
17. Plant and sediment properties in seagrass meadows from two Mediterranean CO Vizzini S; Apostolaki ET; Ricevuto E; Polymenakou P; Mazzola A Mar Environ Res; 2019 Apr; 146():101-108. PubMed ID: 30929836 [TBL] [Abstract][Full Text] [Related]
18. Microbial associates of an endemic Mediterranean seagrass enhance the access of the host and the surrounding seawater to inorganic nitrogen under ocean acidification. Pfister CA; Cardini U; Mirasole A; Montilla LM; Veseli I; Gattuso JP; Teixido N Sci Rep; 2023 Nov; 13(1):19996. PubMed ID: 37968499 [TBL] [Abstract][Full Text] [Related]
19. Bottom-up effects on biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) in an acidified ocean scenario. Asnaghi V; Collard M; Mangialajo L; Gattuso JP; Dubois P Mar Environ Res; 2019 Feb; 144():56-61. PubMed ID: 30591257 [TBL] [Abstract][Full Text] [Related]
20. Boosted nutritional quality of food by CO Leung JYS; Nagelkerken I; Russell BD; Ferreira CM; Connell SD Sci Total Environ; 2018 Oct; 639():360-366. PubMed ID: 29791888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]