These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 32198395)
21. Driving factors of biogeographical variation in seagrass herbivory. Martínez-Crego B; Prado P; Marco-Méndez C; Fernández-Torquemada Y; Espino F; Sánchez-Lizaso JL; de la Ossa JA; Vilella DM; Machado M; Tuya F Sci Total Environ; 2021 Mar; 758():143756. PubMed ID: 33333301 [TBL] [Abstract][Full Text] [Related]
22. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. Tomas F; Martínez-Crego B; Hernán G; Santos R Glob Chang Biol; 2015 Nov; 21(11):4021-30. PubMed ID: 26152761 [TBL] [Abstract][Full Text] [Related]
23. Exploring coexistence mechanisms in a three-species assemblage. Sanmartí N; Ontoria Y; Ricart AM; Arthur R; Alcoverro T; Pérez M; Romero J Mar Environ Res; 2022 Jun; 178():105647. PubMed ID: 35605380 [TBL] [Abstract][Full Text] [Related]
24. Functional loss in herbivores drives runaway expansion of weedy algae in a near-future ocean. Ferreira CM; Nagelkerken I; Goldenberg SU; Walden G; Leung JYS; Connell SD Sci Total Environ; 2019 Dec; 695():133829. PubMed ID: 31421342 [TBL] [Abstract][Full Text] [Related]
25. The role of epiphytes in seagrass productivity under ocean acidification. Berlinghof J; Peiffer F; Marzocchi U; Munari M; Quero GM; Dennis L; Wild C; Cardini U Sci Rep; 2022 Apr; 12(1):6249. PubMed ID: 35428831 [TBL] [Abstract][Full Text] [Related]
26. Salinity stress drives herbivory rates and selective grazing in subtidal seagrass communities. Bell SY; Fraser MW; Statton J; Kendrick GA PLoS One; 2019; 14(3):e0214308. PubMed ID: 30897150 [TBL] [Abstract][Full Text] [Related]
27. Effects of acidification on the biogeochemistry of unvegetated and seagrass marine sediments. Soru S; Berlino M; Sarà G; Mangano MC; De Vittor C; Pusceddu A Mar Pollut Bull; 2024 Feb; 199():115983. PubMed ID: 38277962 [TBL] [Abstract][Full Text] [Related]
28. Ocean warming and acidification modify top-down and bottom-up control in a tropical seagrass ecosystem. Listiawati V; Kurihara H Sci Rep; 2021 Jun; 11(1):13605. PubMed ID: 34193925 [TBL] [Abstract][Full Text] [Related]
29. Comparative evaluation of sea-urchin larval stage sensitivity to ocean acidification. Passarelli MC; Cesar A; Riba I; DelValls TA Chemosphere; 2017 Oct; 184():224-234. PubMed ID: 28599151 [TBL] [Abstract][Full Text] [Related]
30. Direct and indirect impacts of ocean acidification and warming on algae-herbivore interactions in intertidal habitats. Benítez S; Navarro JM; Mardones D; Villanueva PA; Ramirez-Kushel F; Torres R; Lagos NA Mar Pollut Bull; 2023 Oct; 195():115549. PubMed ID: 37729690 [TBL] [Abstract][Full Text] [Related]
31. Biogenic habitat shifts under long-term ocean acidification show nonlinear community responses and unbalanced functions of associated invertebrates. Milazzo M; Alessi C; Quattrocchi F; Chemello R; D'Agostaro R; Gil J; Vaccaro AM; Mirto S; Gristina M; Badalamenti F Sci Total Environ; 2019 Jun; 667():41-48. PubMed ID: 30825820 [TBL] [Abstract][Full Text] [Related]
32. Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification. Rossi T; Nagelkerken I; Pistevos JC; Connell SD Biol Lett; 2016 Jan; 12(1):20150937. PubMed ID: 26763221 [TBL] [Abstract][Full Text] [Related]
33. Contribution of green turtles Chelonia mydas to total herbivore biomass in shallow tropical reefs of oceanic islands. Cardona L; Campos P; Velásquez-Vacca A PLoS One; 2020; 15(1):e0228548. PubMed ID: 31999812 [TBL] [Abstract][Full Text] [Related]
35. Altered sediment biota and lagoon habitat carbonate dynamics due to sea cucumber bioturbation in a high-pCO Wolfe K; Vidal-Ramirez F; Dove S; Deaker D; Byrne M Glob Chang Biol; 2018 Jan; 24(1):465-480. PubMed ID: 28727218 [TBL] [Abstract][Full Text] [Related]
36. Use of a free ocean CO₂ enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin. Barry JP; Lovera C; Buck KR; Peltzer ET; Taylor JR; Walz P; Whaling PJ; Brewer PG Environ Sci Technol; 2014 Aug; 48(16):9890-7. PubMed ID: 25051305 [TBL] [Abstract][Full Text] [Related]
37. Ocean acidification affects parameters of immune response and extracellular pH in tropical sea urchins Lytechinus variegatus and Echinometra luccunter. Leite Figueiredo DA; Branco PC; Dos Santos DA; Emerenciano AK; Iunes RS; Shimada Borges JC; Machado Cunha da Silva JR Aquat Toxicol; 2016 Nov; 180():84-94. PubMed ID: 27684601 [TBL] [Abstract][Full Text] [Related]
38. Who wins or loses matters: Strongly interacting consumers drive seagrass resistance under ocean acidification. Lee J; Hughes BB; Kroeker KJ; Owens A; Wong C; Micheli F Sci Total Environ; 2022 Feb; 808():151594. PubMed ID: 34826463 [TBL] [Abstract][Full Text] [Related]
39. Top-down control of epifauna by fishes enhances seagrass production. Lewis LS; Anderson TW Ecology; 2012 Dec; 93(12):2746-57. PubMed ID: 23431604 [TBL] [Abstract][Full Text] [Related]
40. Ocean acidification and the loss of phenolic substances in marine plants. Arnold T; Mealey C; Leahey H; Miller AW; Hall-Spencer JM; Milazzo M; Maers K PLoS One; 2012; 7(4):e35107. PubMed ID: 22558120 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]