These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32198445)

  • 1. Optical Fredkin gate assisted by quantum dot within optical cavity under vacuum noise and sideband leakage.
    Kang MS; Heo J; Choi SG; Moon S; Han SW
    Sci Rep; 2020 Mar; 10(1):5123. PubMed ID: 32198445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonic scheme of discrete quantum Fourier transform for quantum algorithms via quantum dots.
    Heo J; Won K; Yang HJ; Hong JP; Choi SG
    Sci Rep; 2019 Aug; 9(1):12440. PubMed ID: 31455794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encoding scheme using quantum dots for single logical qubit information onto four-photon decoherence-free states.
    Heo J; Hong C; Kang MS; Yang HJ
    Sci Rep; 2020 Sep; 10(1):15334. PubMed ID: 32948781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scheme for generation of three-photon entangled W state assisted by cross-Kerr nonlinearity and quantum dot.
    Heo J; Hong C; Choi SG; Hong JP
    Sci Rep; 2019 Jul; 9(1):10151. PubMed ID: 31300664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical scheme for generating hyperentanglement having photonic qubit and time-bin via quantum dot and cross-Kerr nonlinearity.
    Hong CH; Heo J; Kang MS; Jang J; Yang HJ
    Sci Rep; 2018 Feb; 8(1):2566. PubMed ID: 29416070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantum Fredkin gate.
    Patel RB; Ho J; Ferreyrol F; Ralph TC; Pryde GJ
    Sci Adv; 2016 Mar; 2(3):e1501531. PubMed ID: 27051868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal quantum gate with hybrid qubits in circuit quantum electrodynamics.
    Yang CP; Zheng ZF; Zhang Y
    Opt Lett; 2018 Dec; 43(23):5765-5768. PubMed ID: 30499988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications.
    Liu T; Guo BQ; Yu CS; Zhang WN
    Opt Express; 2018 Feb; 26(4):4498-4511. PubMed ID: 29475300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circuit QED: single-step realization of a multiqubit controlled phase gate with one microwave photonic qubit simultaneously controlling n - 1 microwave photonic qubits.
    Ye B; Zheng ZF; Zhang Y; Yang CP
    Opt Express; 2018 Nov; 26(23):30689-30702. PubMed ID: 30469962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity.
    Wei HR; Deng FG
    Opt Express; 2013 Jul; 21(15):17671-85. PubMed ID: 23938640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete and faithful hyperentangled-Bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate.
    Cao C; Zhang L; Han YH; Yin PP; Fan L; Duan YW; Zhang R
    Opt Express; 2020 Feb; 28(3):2857-2872. PubMed ID: 32121965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation of a quantum controlled-SWAP gate with photonic circuits.
    Ono T; Okamoto R; Tanida M; Hofmann HF; Takeuchi S
    Sci Rep; 2017 Mar; 7():45353. PubMed ID: 28361950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of controlled quantum teleportation with an arbitrator for secure quantum channels via quantum dots inside optical cavities.
    Heo J; Hong CH; Kang MS; Yang H; Yang HJ; Hong JP; Choi SG
    Sci Rep; 2017 Nov; 7(1):14905. PubMed ID: 29097727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities.
    Wei HR; Deng FG
    Sci Rep; 2014 Dec; 4():7551. PubMed ID: 25518899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantum gate between a flying optical photon and a single trapped atom.
    Reiserer A; Kalb N; Rempe G; Ritter S
    Nature; 2014 Apr; 508(7495):237-40. PubMed ID: 24717512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-target-qubit unconventional geometric phase gate in a multi-cavity system.
    Liu T; Cao XZ; Su QP; Xiong SJ; Yang CP
    Sci Rep; 2016 Feb; 6():21562. PubMed ID: 26898176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities.
    Hu S; Cui WX; Wang DY; Bai CH; Guo Q; Wang HF; Zhu AD; Zhang S
    Sci Rep; 2015 Jul; 5():11321. PubMed ID: 26225781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proposal for implementing an n-qubit controlled-rotation gate with three-level superconducting qubit systems in cavity QED.
    Yang CP
    J Phys Condens Matter; 2011 Jun; 23(22):225702. PubMed ID: 21593555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient ion-photon qubit SWAP gate in realistic ion cavity-QED systems without strong coupling.
    Borne A; Northup TE; Blatt R; Dayan B
    Opt Express; 2020 Apr; 28(8):11822-11839. PubMed ID: 32403685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.