These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32198531)

  • 1. High-throughput dielectrophoretic filtration of sub-micron and micro particles in macroscopic porous materials.
    Lorenz M; Malangré D; Du F; Baune M; Thöming J; Pesch GR
    Anal Bioanal Chem; 2020 Jun; 412(16):3903-3914. PubMed ID: 32198531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bridging the scales in high-throughput dielectrophoretic (bio-)particle separation in porous media.
    Pesch GR; Lorenz M; Sachdev S; Salameh S; Du F; Baune M; Boukany PE; Thöming J
    Sci Rep; 2018 Jul; 8(1):10480. PubMed ID: 29993026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the filter grain morphology on separation efficiency in dielectrophoretic filtration.
    Kepper M; Karim MN; Baune M; Thöming J; Pesch GR
    Electrophoresis; 2023 Nov; 44(21-22):1645-1654. PubMed ID: 37380622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semi-continuous dielectrophoretic separation at high throughput using printed circuit boards.
    Giesler J; Weirauch L; Pesch GR; Baune M; Thöming J
    Sci Rep; 2023 Nov; 13(1):20696. PubMed ID: 38001123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of dielectrophoretic separation and classification of non-biological particles.
    Pesch GR; Du F
    Electrophoresis; 2021 Jan; 42(1-2):134-152. PubMed ID: 32667696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Continuous Free-Flow Dielectrophoretic Trapping of Micron-Scale Particles and Cells in Paper Using Localized Nonuniform Pore-Scale-Generated Paper-Based Electric Field Gradients.
    Islam MN; Jaiswal B; Gagnon ZR
    Anal Chem; 2024 Jan; 96(3):1084-1092. PubMed ID: 38194698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput dielectrophoretic separator based on printed circuit boards.
    Giesler J; Weirauch L; Thöming J; Baune M; Pesch GR
    Electrophoresis; 2023 Jan; 44(1-2):72-81. PubMed ID: 35968886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results.
    Cummings EB; Singh AK
    Anal Chem; 2003 Sep; 75(18):4724-31. PubMed ID: 14674447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectrophoretic separation of bioparticles in microdevices: a review.
    Jubery TZ; Srivastava SK; Dutta P
    Electrophoresis; 2014 Mar; 35(5):691-713. PubMed ID: 24338825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compensation of capacitive currents in high-throughput dielectrophoretic separators.
    Giesler J; Weirauch L; Thöming J; Baune M
    Sci Rep; 2024 Jul; 14(1):16491. PubMed ID: 39020049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles.
    Jia Y; Ren Y; Jiang H
    Electrophoresis; 2015 Aug; 36(15):1744-53. PubMed ID: 25962351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array.
    Wu Y; Ren Y; Tao Y; Hou L; Jiang H
    Anal Chem; 2018 Oct; 90(19):11461-11469. PubMed ID: 30192521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of microstructures on a dielectrophoretic chip for trapping particles.
    Chuang CH; Hsu YM; Wei CH
    Electrophoresis; 2009 Sep; 30(17):3044-3052. PubMed ID: 19676085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous separation of multiple particles by negative and positive dielectrophoresis in a modified H-filter.
    Lewpiriyawong N; Yang C
    Electrophoresis; 2014 Mar; 35(5):714-20. PubMed ID: 24338796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of geometry and material of insulating posts on particle trapping using positive dielectrophoresis.
    Pesch GR; Du F; Baune M; Thöming J
    J Chromatogr A; 2017 Feb; 1483():127-137. PubMed ID: 28057332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AC-dielectrophoretic characterization and separation of submicron and micron particles using sidewall AgPDMS electrodes.
    Lewpiriyawong N; Yang C
    Biomicrofluidics; 2012 Mar; 6(1):12807-128079. PubMed ID: 22662074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous dielectrophoretic separation of particles in a spiral microchannel.
    Zhu J; Tzeng TR; Xuan X
    Electrophoresis; 2010 Apr; 31(8):1382-8. PubMed ID: 20301126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.