These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32198758)

  • 1. Will rising atmospheric CO
    Andrews M; Condron LM; Kemp PD; Topping JF; Lindsey K; Hodge S; Raven JA
    Physiol Plant; 2020 Sep; 170(1):40-45. PubMed ID: 32198758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rising atmospheric CO
    Bloom AJ; Kasemsap P; Rubio-Asensio JS
    Physiol Plant; 2020 Apr; 168(4):963-972. PubMed ID: 31642522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated CO2 effects on nitrogen assimilation and growth of C3 vascular plants are similar regardless of N-form assimilated.
    Andrews M; Condron LM; Kemp PD; Topping JF; Lindsey K; Hodge S; Raven JA
    J Exp Bot; 2019 Jan; 70(2):683-690. PubMed ID: 30403798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen balance for wheat canopies (Triticum aestivum cv. Veery 10) grown under elevated and ambient CO2 concentrations.
    Smart DR; Ritchie K; Bloom AJ; Bugbee BB
    Plant Cell Environ; 1998; 21():753-63. PubMed ID: 11543217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The proportion of nitrate in leaf nitrogen, but not changes in root growth, are associated with decreased grain protein in wheat under elevated [CO
    Bahrami H; De Kok LJ; Armstrong R; Fitzgerald GJ; Bourgault M; Henty S; Tausz M; Tausz-Posch S
    J Plant Physiol; 2017 Sep; 216():44-51. PubMed ID: 28575746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inorganic nitrogen form: a major player in wheat and Arabidopsis responses to elevated CO2.
    Rubio-Asensio JS; Bloom AJ
    J Exp Bot; 2017 May; 68(10):2611-2625. PubMed ID: 28011716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 enrichment inhibits shoot nitrate assimilation in C3 but not C4 plants and slows growth under nitrate in C3 plants.
    Bloom AJ; Asensio JS; Randall L; Rachmilevitch S; Cousins AB; Carlisle EA
    Ecology; 2012 Feb; 93(2):355-67. PubMed ID: 22624317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of free air carbon dioxide enrichment (FACE) on nitrogen assimilation and growth of winter wheat under nitrate and ammonium fertilization.
    Dier M; Meinen R; Erbs M; Kollhorst L; Baillie CK; Kaufholdt D; Kücke M; Weigel HJ; Zörb C; Hänsch R; Manderscheid R
    Glob Chang Biol; 2018 Jan; 24(1):e40-e54. PubMed ID: 28715112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of Arabidopsis and wheat to rising CO2 depend on nitrogen source and nighttime CO2 levels.
    Asensio JS; Rachmilevitch S; Bloom AJ
    Plant Physiol; 2015 May; 168(1):156-63. PubMed ID: 25755253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated CO
    Jayawardena DM; Heckathorn SA; Bista DR; Mishra S; Boldt JK; Krause CR
    Physiol Plant; 2017 Mar; 159(3):354-365. PubMed ID: 27893161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated CO
    Adavi SB; Sathee L
    Protoplasma; 2021 Jan; 258(1):219-233. PubMed ID: 33047233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ammonium and nitrate acquisition by plants in response to elevated CO2 concentration: the roles of root physiology and architecture.
    Bauer GA; Berntson GM
    Tree Physiol; 2001 Feb; 21(2-3):137-44. PubMed ID: 11303644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study.
    Drake BG
    Glob Chang Biol; 2014 Nov; 20(11):3329-43. PubMed ID: 24820033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen assimilation and growth of wheat under elevated carbon dioxide.
    Bloom AJ; Smart DR; Nguyen DT; Searles PS
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1730-5. PubMed ID: 11818528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Responses of agricultural crops of free-air CO2 enrichment].
    Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic Profiling for Metabolic Pathways Involved in Interactive Effects of Elevated Carbon Dioxide and Nitrogen on Leaf Growth in a Perennial Grass Species.
    Yu J; Fan N; Li R; Zhuang L; Xu Q; Huang B
    J Proteome Res; 2019 Jun; 18(6):2446-2457. PubMed ID: 31081640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Root-shoot interactions explain the reduction of leaf mineral content in Arabidopsis plants grown under elevated [CO2 ] conditions.
    Jauregui I; Aparicio-Tejo PM; Avila C; Cañas R; Sakalauskiene S; Aranjuelo I
    Physiol Plant; 2016 Sep; 158(1):65-79. PubMed ID: 26801348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of rising atmospheric carbon dioxide on shoot-root nitrogen and water signaling.
    Easlon HM; Bloom AJ
    Front Plant Sci; 2013; 4():304. PubMed ID: 23983674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct and indirect effects of elevated atmospheric CO2 on net ecosystem production in a Chesapeake Bay tidal wetland.
    Erickson JE; Peresta G; Montovan KJ; Drake BG
    Glob Chang Biol; 2013 Nov; 19(11):3368-78. PubMed ID: 23828758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photon costs of shoot and root NO
    Raven JA; Andrews M
    Photosynth Res; 2023 Feb; 155(2):127-137. PubMed ID: 36418758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.