These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 32198888)

  • 1. Regulation of the RNA and DNA nuclease activities required for Pyrococcus furiosus Type III-B CRISPR-Cas immunity.
    Foster K; Grüschow S; Bailey S; White MF; Terns MP
    Nucleic Acids Res; 2020 May; 48(8):4418-4434. PubMed ID: 32198888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CRISPR-associated Csx1 protein of Pyrococcus furiosus is an adenosine-specific endoribonuclease.
    Sheppard NF; Glover CV; Terns RM; Terns MP
    RNA; 2016 Feb; 22(2):216-24. PubMed ID: 26647461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems.
    Foster K; Kalter J; Woodside W; Terns RM; Terns MP
    RNA Biol; 2019 Apr; 16(4):449-460. PubMed ID: 29995577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus.
    Majumdar S; Zhao P; Pfister NT; Compton M; Olson S; Glover CV; Wells L; Graveley BR; Terns RM; Terns MP
    RNA; 2015 Jun; 21(6):1147-58. PubMed ID: 25904135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system.
    Elmore JR; Sheppard NF; Ramia N; Deighan T; Li H; Terns RM; Terns MP
    Genes Dev; 2016 Feb; 30(4):447-59. PubMed ID: 26848045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA targeting by the type I-G and type I-A CRISPR-Cas systems of Pyrococcus furiosus.
    Elmore J; Deighan T; Westpheling J; Terns RM; Terns MP
    Nucleic Acids Res; 2015 Dec; 43(21):10353-63. PubMed ID: 26519471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the cyclic oligoadenylate signaling pathway of type III CRISPR systems.
    Rouillon C; Athukoralage JS; Graham S; Grüschow S; White MF
    Methods Enzymol; 2019; 616():191-218. PubMed ID: 30691643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR RNA-guided DNA cleavage by reconstituted Type I-A immune effector complexes.
    Majumdar S; Terns MP
    Extremophiles; 2019 Jan; 23(1):19-33. PubMed ID: 30284045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers.
    Niewoehner O; Garcia-Doval C; Rostøl JT; Berk C; Schwede F; Bigler L; Hall J; Marraffini LA; Jinek M
    Nature; 2017 Aug; 548(7669):543-548. PubMed ID: 28722012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primed CRISPR DNA uptake in Pyrococcus furiosus.
    Garrett S; Shiimori M; Watts EA; Clark L; Graveley BR; Terns MP
    Nucleic Acids Res; 2020 Jun; 48(11):6120-6135. PubMed ID: 32421777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Card1 nuclease provides defence during type III CRISPR immunity.
    Rostøl JT; Xie W; Kuryavyi V; Maguin P; Kao K; Froom R; Patel DJ; Marraffini LA
    Nature; 2021 Feb; 590(7847):624-629. PubMed ID: 33461211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target DNA recognition and cleavage by a reconstituted Type I-G CRISPR-Cas immune effector complex.
    Majumdar S; Ligon M; Skinner WC; Terns RM; Terns MP
    Extremophiles; 2017 Jan; 21(1):95-107. PubMed ID: 27582008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective degradation of phage RNAs by the Csm6 ribonuclease provides robust type III CRISPR immunity in Streptococcus thermophilus.
    Johnson KA; Garrett SC; Noble-Molnar C; Elgarhi HA; Woodside WT; Cooper C; Zhang X; Olson S; Catchpole RJ; Graveley BR; Terns MP
    Nucleic Acids Res; 2024 Nov; 52(20):12549-12564. PubMed ID: 39360614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding.
    Han W; Stella S; Zhang Y; Guo T; Sulek K; Peng-Lundgren L; Montoya G; She Q
    Nucleic Acids Res; 2018 Nov; 46(19):10319-10330. PubMed ID: 30239876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure and nucleic acid-binding activity of the CRISPR-associated protein Csx1 of Pyrococcus furiosus.
    Kim YK; Kim YG; Oh BH
    Proteins; 2013 Feb; 81(2):261-70. PubMed ID: 22987782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus.
    Terns RM; Terns MP
    Biochem Soc Trans; 2013 Dec; 41(6):1416-21. PubMed ID: 24256230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex.
    Hale CR; Cocozaki A; Li H; Terns RM; Terns MP
    Genes Dev; 2014 Nov; 28(21):2432-43. PubMed ID: 25367038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6.
    Niewoehner O; Jinek M
    RNA; 2016 Mar; 22(3):318-29. PubMed ID: 26763118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of Oligonucleotide Signaling Mediated by CRISPR-Associated Polymerases Solves Two Puzzles but Leaves an Enigma.
    Koonin EV; Makarova KS
    ACS Chem Biol; 2018 Feb; 13(2):309-312. PubMed ID: 28937734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas III-A Csm6 CARF Domain Is a Ring Nuclease Triggering Stepwise cA
    Jia N; Jones R; Yang G; Ouerfelli O; Patel DJ
    Mol Cell; 2019 Sep; 75(5):944-956.e6. PubMed ID: 31326273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.