These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32198904)

  • 1. Copper (II) removal in a column reactor using electrocoagulation: Parametric optimization by response surface methodology using central composite design.
    Mateen QS; Khan SU; Islam DT; Khan NA; Farooqi IH
    Water Environ Res; 2020 Sep; 92(9):1350-1362. PubMed ID: 32198904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between sinusoidal AC coagulation and conventional DC coagulation in removing Cu
    Xu T; Zhou Y; Hu B; Lei X; Yu G
    Ecotoxicol Environ Saf; 2020 Jul; 197():110629. PubMed ID: 32325329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametric and energy consumption optimization of Basic Red 2 removal by electrocoagulation/egg shell adsorption coupling using response surface methodology in a batch system.
    de Carvalho HP; Huang J; Zhao M; Liu G; Yang X; Dong L; Liu X
    Water Sci Technol; 2016; 73(11):2572-82. PubMed ID: 27232392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Fe(II) from tap water by electrocoagulation technique.
    Ghosh D; Solanki H; Purkait MK
    J Hazard Mater; 2008 Jun; 155(1-2):135-43. PubMed ID: 18164128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of poly aniline modified chitosan embedded with ZnO-Fe
    Kavosi Rakati K; Mirzaei M; Maghsoodi S; Shahbazi A
    Int J Biol Macromol; 2019 Jun; 130():1025-1045. PubMed ID: 30826403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of Mn removal from aqueous solutions through electrocoagulation.
    Omranpour Shahreza S; Mokhtarian N; Behnam S
    Environ Technol; 2020 Mar; 41(7):890-900. PubMed ID: 30122127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocoagulation removal of Pb, Cd, and Cu ions from wastewater using a new configuration of electrodes.
    AlJaberi FY; Hawaas ZA
    MethodsX; 2023; 10():101951. PubMed ID: 36545545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosorption of copper ions from aqueous solution using rape straw powders: Optimization, equilibrium and kinetic studies.
    Liu X; Chen ZQ; Han B; Su CL; Han Q; Chen WZ
    Ecotoxicol Environ Saf; 2018 Apr; 150():251-259. PubMed ID: 29288906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High thiabendazole fungicide uptake using Cellana tramoserica shells modified by copper: characterization, adsorption mechanism, and optimization using CCD-RSM approach.
    Aziz K; Aziz F; Mamouni R; Aziz L; Anfar Z; Azrrar A; Kjidaa B; Saffaj N; Laknifli A
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):86020-86035. PubMed ID: 34490581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of electrocoagulation process for wastewater treatment: optimization by response surface methodology.
    Ebba M; Asaithambi P; Alemayehu E
    Heliyon; 2022 May; 8(5):e09383. PubMed ID: 35592662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response surface modeling of ceftriaxone removal from hospital wastewater.
    Noudeh GD; Asdaghi M; Noudeh ND; Dolatabadi M; Ahmadzadeh S
    Environ Monit Assess; 2022 Dec; 195(1):217. PubMed ID: 36539635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of energy and electrode consumption of Acid Red 18 removal using electrocoagulation process through RSM: alternating and direct current.
    Payami Shabestar M; Alavi Moghaddam MR; Karamati-Niaragh E
    Environ Sci Pollut Res Int; 2021 Dec; 28(47):67214-67223. PubMed ID: 34247355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of natural organic matter from aqueous solutions using electrocoagulation pulsed current: optimization using response surface methodology.
    de Oliveira AG; Ribeiro JP; Neto EFA; de Lima ACA; Amazonas ÁA; da Silva LTV; do Nascimento RF
    Water Sci Technol; 2020 Jul; 82(1):56-66. PubMed ID: 32910792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient and energy-conserved flocculation of copper in wastewater by pulse-alternating current.
    Xu T; Lei X; Sun B; Yu G; Zeng Y
    Environ Sci Pollut Res Int; 2017 Sep; 24(25):20577-20586. PubMed ID: 28710738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluoride removal from natural volcanic underground water by an electrocoagulation process: Parametric and cost evaluations.
    Mena VF; Betancor-Abreu A; González S; Delgado S; Souto RM; Santana JJ
    J Environ Manage; 2019 Sep; 246():472-483. PubMed ID: 31200181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrocoagulation/flotation process for removing copper from an aqueous environment.
    Kashi G
    Sci Rep; 2023 Aug; 13(1):13334. PubMed ID: 37587185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boron removal by electrocoagulation and recovery.
    Isa MH; Ezechi EH; Ahmed Z; Magram SF; Kutty SR
    Water Res; 2014 Mar; 51():113-23. PubMed ID: 24412846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy consumption and relative efficiency improvement of Photo-Fenton - Optimization by RSM for landfill leachate treatment, a case study.
    Ghanbarzadeh Lak M; Sabour MR; Ghafari E; Amiri A
    Waste Manag; 2018 Sep; 79():58-70. PubMed ID: 30343790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response Methodology Optimization and Artificial Neural Network Modeling for the Removal of Sulfamethoxazole Using an Ozone-Electrocoagulation Hybrid Process.
    Nghia NT; Tuyen BTK; Quynh NT; Thuy NTT; Nguyen TN; Nguyen VD; Tran TKN
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of malachite green from aqueous solutions by electrocoagulation/peanut shell adsorption coupling in a batch system.
    Wang X; Ni J; Pang S; Li Y
    Water Sci Technol; 2017 Apr; 75(7-8):1830-1838. PubMed ID: 28452775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.