BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

721 related articles for article (PubMed ID: 32198934)

  • 1. U-net-based deformation vector field estimation for motion-compensated 4D-CBCT reconstruction.
    Huang X; Zhang Y; Chen L; Wang J
    Med Phys; 2020 Jul; 47(7):3000-3012. PubMed ID: 32198934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT.
    Wang J; Gu X
    Med Phys; 2013 Oct; 40(10):101912. PubMed ID: 24089914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4D liver tumor localization using cone-beam projections and a biomechanical model.
    Zhang Y; Folkert MR; Li B; Huang X; Meyer JJ; Chiu T; Lee P; Tehrani JN; Cai J; Parsons D; Jia X; Wang J
    Radiother Oncol; 2019 Apr; 133():183-192. PubMed ID: 30448003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction.
    Huang X; Zhang Y; Wang J
    Phys Med Biol; 2018 Feb; 63(4):045002. PubMed ID: 29328048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced 4-dimensional cone-beam computed tomography reconstruction by combining motion estimation, motion-compensated reconstruction, biomechanical modeling and deep learning.
    Zhang Y; Huang X; Wang J
    Vis Comput Ind Biomed Art; 2019; 2(1):23. PubMed ID: 32190409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dosimetric evaluation of 4D-CBCT reconstructed by Simultaneous Motion Estimation and Image Reconstruction (SMEIR) for carbon ion therapy of lung cancer.
    Shrestha D; Tsai MY; Qin N; Zhang Y; Jia X; Wang J
    Med Phys; 2019 Sep; 46(9):4087-4094. PubMed ID: 31299097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) reconstruction.
    Zhang Z; Liu J; Yang D; Kamilov US; Hugo GD
    Med Phys; 2023 Feb; 50(2):808-820. PubMed ID: 36412165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pilot evaluation of a 4-dimensional cone-beam computed tomographic scheme based on simultaneous motion estimation and image reconstruction.
    Dang J; Gu X; Pan T; Wang J
    Int J Radiat Oncol Biol Phys; 2015 Feb; 91(2):410-8. PubMed ID: 25636763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous 4D-CBCT reconstruction with sliding motion constraint.
    Dang J; Yin FF; You T; Dai C; Chen D; Wang J
    Med Phys; 2016 Oct; 43(10):5453. PubMed ID: 27782722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic liver tumor localization using deep learning-based liver boundary motion estimation and biomechanical modeling (DL-Bio).
    Shao HC; Huang X; Folkert MR; Wang J; Zhang Y
    Med Phys; 2021 Dec; 48(12):7790-7805. PubMed ID: 34632589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing liver tumor localization accuracy by prior-knowledge-guided motion modeling and a biomechanical model.
    Zhang Y; Folkert MR; Huang X; Ren L; Meyer J; Tehrani JN; Reynolds R; Wang J
    Quant Imaging Med Surg; 2019 Jul; 9(7):1337-1349. PubMed ID: 31448218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR).
    Kalantari F; Li T; Jin M; Wang J
    Phys Med Biol; 2016 Aug; 61(15):5639-61. PubMed ID: 27385378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General simultaneous motion estimation and image reconstruction (G-SMEIR).
    Zhou S; Chi Y; Wang J; Jin M
    Biomed Phys Eng Express; 2021 Jul; 7(5):. PubMed ID: 34237713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Biomechanical Modeling Guided CBCT Estimation Technique.
    Zhang Y; Tehrani JN; Wang J
    IEEE Trans Med Imaging; 2017 Feb; 36(2):641-652. PubMed ID: 27831866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal structure-aware dictionary learning-based 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2021 Oct; 48(10):6421-6436. PubMed ID: 34514608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-quality four-dimensional cone-beam CT by deforming prior images.
    Wang J; Gu X
    Phys Med Biol; 2013 Jan; 58(2):231-46. PubMed ID: 23257113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-quality initial image-guided 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2020 Jun; 47(5):2099-2115. PubMed ID: 32017128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction.
    Madesta F; Sentker T; Gauer T; Werner R
    Med Phys; 2020 Nov; 47(11):5619-5631. PubMed ID: 33063329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling.
    Zhong Z; Gu X; Mao W; Wang J
    Phys Med Biol; 2016 Feb; 61(3):996-1020. PubMed ID: 26758496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully Automatic Sliding Motion Compensated and Simultaneous 4D-CBCT
    Dang J; You T; Sun W; Xiao H; Li L; Chen X; Dai C; Li Y; Song Y; Zhang T; Chen D
    Front Oncol; 2020; 10():568627. PubMed ID: 33537233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.