BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32199189)

  • 61. Functional Genes and Bacterial Communities During Organohalide Respiration of Chloroethenes in Microcosms of Multi-Contaminated Groundwater.
    Hermon L; Hellal J; Denonfoux J; Vuilleumier S; Imfeld G; Urien C; Ferreira S; Joulian C
    Front Microbiol; 2019; 10():89. PubMed ID: 30809199
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene.
    Xiu ZM; Jin ZH; Li TL; Mahendra S; Lowry GV; Alvarez PJ
    Bioresour Technol; 2010 Feb; 101(4):1141-6. PubMed ID: 19819128
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Impact of iron- and/or sulfate-reduction on a cis-1,2-dichloroethene and vinyl chloride respiring bacterial consortium: experiments and model-based interpretation.
    Murray A; Maillard J; Rolle M; Broholm M; Holliger C
    Environ Sci Process Impacts; 2020 Mar; 22(3):740-750. PubMed ID: 32003373
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modified nanoscale zero-valent iron in persulfate activation for organic pollution remediation: a review.
    Wang B; Deng C; Ma W; Sun Y
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):34229-34247. PubMed ID: 34002318
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation.
    Zhao X; Liu W; Cai Z; Han B; Qian T; Zhao D
    Water Res; 2016 Sep; 100():245-266. PubMed ID: 27206054
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Acidification and sulfide formation control during reductive dechlorination of 1,2-dichloroethane in groundwater: Effectiveness and mechanistic study.
    Wang SY; Chen SC; Lin YC; Kuo YC; Chen JY; Kao CM
    Chemosphere; 2016 Oct; 160():216-29. PubMed ID: 27376861
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Improved longevity of nanoscale zero-valent iron with a magnesium hydroxide coating shell for the removal of Cr(VI) in sand columns.
    Hu YB; Zhang M; Li XY
    Environ Int; 2019 Dec; 133(Pt B):105249. PubMed ID: 31665676
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.
    He F; Zhao D; Paul C
    Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Contributions of Abiotic and Biotic Dechlorination Following Carboxymethyl Cellulose Stabilized Nanoscale Zero Valent Iron Injection.
    Kocur CM; Lomheim L; Boparai HK; Chowdhury AI; Weber KP; Austrins LM; Edwards EA; Sleep BE; O'Carroll DM
    Environ Sci Technol; 2015 Jul; 49(14):8648-56. PubMed ID: 26090687
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of hydrogen gas production, trapping and bubble-facilitated transport during nanoscale zero-valent iron (nZVI) injection in porous media.
    Mohammed O; Mumford KG; Sleep BE
    J Contam Hydrol; 2020 Oct; 234():103677. PubMed ID: 32663719
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons.
    Atashgahi S; Maphosa F; De Vrieze J; Haest PJ; Boon N; Smidt H; Springael D; Dejonghe W
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2255-66. PubMed ID: 23955471
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Assessing the transformation of chlorinated ethenes in aquifers with limited potential for natural attenuation: added values of compound-specific carbon isotope analysis and groundwater dating.
    Amaral HI; Aeppli C; Kipfer R; Berg M
    Chemosphere; 2011 Oct; 85(5):774-81. PubMed ID: 21741066
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Enhanced nitrate-nitrogen removal by modified attapulgite-supported nanoscale zero-valent iron treating simulated groundwater.
    Dong L; Lin L; Li Q; Huang Z; Tang X; Wu M; Li C; Cao X; Scholz M
    J Environ Manage; 2018 May; 213():151-158. PubMed ID: 29494931
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Stratification of chlorinated ethenes natural attenuation in an alluvial aquifer assessed by hydrochemical and biomolecular tools.
    Němeček J; Dolinová I; Macháčková J; Špánek R; Ševců A; Lederer T; Černík M
    Chemosphere; 2017 Oct; 184():1157-1167. PubMed ID: 28672697
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Synergistic Effect of Soil Organic Matter and Nanoscale Zero-Valent Iron on Biodechlorination.
    Liu Y; Wang Y; Wu T; Xu J; Lin D
    Environ Sci Technol; 2022 Apr; 56(8):4915-4925. PubMed ID: 35389637
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities.
    Lefevre E; Bossa N; Wiesner MR; Gunsch CK
    Sci Total Environ; 2016 Sep; 565():889-901. PubMed ID: 26897610
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The corrinoid cofactor of reductive dehalogenases affects dechlorination rates and extents in organohalide-respiring Dehalococcoides mccartyi.
    Yan J; Şimşir B; Farmer AT; Bi M; Yang Y; Campagna SR; Löffler FE
    ISME J; 2016 May; 10(5):1092-101. PubMed ID: 26555247
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A field comparison of two reductive dechlorination (zero-valent iron and lactate) methods.
    Lacinova L; Kvapil P; Cernik M
    Environ Technol; 2012; 33(7-9):741-9. PubMed ID: 22720397
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reductive dehalogenase gene expression as a biomarker for physiological activity of Dehalococcoides spp.
    Lee PK; Johnson DR; Holmes VF; He J; Alvarez-Cohen L
    Appl Environ Microbiol; 2006 Sep; 72(9):6161-8. PubMed ID: 16957242
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Assessment of in situ degradation of chlorinated ethenes and bacterial community structure in a complex contaminated groundwater system.
    Imfeld G; Nijenhuis I; Nikolausz M; Zeiger S; Paschke H; Drangmeister J; Grossmann J; Richnow HH; Weber S
    Water Res; 2008 Feb; 42(4-5):871-82. PubMed ID: 17915287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.