BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 32199191)

  • 1. Recent advances in carbon nanotube sponge-based sorption technologies for mitigation of marine oil spills.
    Kukkar D; Rani A; Kumar V; Younis SA; Zhang M; Lee SS; Tsang DCW; Kim KH
    J Colloid Interface Sci; 2020 Jun; 570():411-422. PubMed ID: 32199191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Nanotubes and Polydopamine Modified Poly(dimethylsiloxane) Sponges for Efficient Oil-Water Separation.
    Zhang W; Wang J; Han X; Li L; Liu E; Lu C
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34067132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemically fast preparation of superhydrophobic copper mesh for high-efficiency oil spill adsorption and oil-water separation.
    Chen X; Gong X
    J Hazard Mater; 2024 Jul; 472():134465. PubMed ID: 38704904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly reusable and superhydrophobic spongy graphene aerogels for efficient oil/water separation.
    Luo Y; Jiang S; Xiao Q; Chen C; Li B
    Sci Rep; 2017 Aug; 7(1):7162. PubMed ID: 28769065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential of thermally expanded graphite in oil sorption applications.
    Elbidi M; Mohd Salleh MA; Rashid SA; Mukhtar Gunam Resul MF
    RSC Adv; 2024 May; 14(23):16466-16485. PubMed ID: 38774609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium Alginate Aerogel as a Carrier of Organogelators for Effective Oil Spill Solidification and Recovery.
    Xue Y; Shen Y; Chen X; Dong L; Li J; Guan Y; Li Y
    Langmuir; 2024 Jan; 40(2):1515-1523. PubMed ID: 38176104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oil-recovery performance of a superhydrophobic sponge-covered disc skimmer.
    Yan X; Xie Y; Zhang S; Sheng X; Sun J; Wang W; Liu J; Dou X
    Heliyon; 2024 Jun; 10(11):e31574. PubMed ID: 38845967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repurposing the single-used-plastic for development of hydrophobic aerogels for remediation of oil spill and organic solvents.
    Bera T; Manna S; Sharma AK; Bahukhandi K; Sharma M; Bhunia B
    Sci Total Environ; 2023 Dec; 903():166670. PubMed ID: 37652381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transparent Oil-Water Separating Hydrophobic Sponge Prepared from a Pickering High Internal Phase Emulsion Stabilized by Octadecyltrichlorosilane Grafting Carbon Nanotubes.
    Chen Y; Li J; Yang Y; Yang J; Lin H; Wang Q; Yang X; Meng Y; Li W; Lin Z; Zhang P
    Langmuir; 2023 Dec; 39(48):17378-17391. PubMed ID: 37975653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Multifunctional Carbon Fibrous Sponges Derived from Pitch.
    Wang H; Bai X; Wu Y; Peng D; Liu J; Li Z; Cheng Z; Zhou Y; Huang K; Li B; Wu H
    Small; 2024 Jun; ():e2401939. PubMed ID: 38924354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TDA/rGO@WS with Joule heat and photothermal synergistic effect: A promising adsorption material for all-weather recovery of viscous oil spills at sea.
    Du M; Shi H; Yin R; Yang J; Shi F; Zheng Q; Zhou Y; Guo R; Wu W
    J Hazard Mater; 2024 Mar; 466():133542. PubMed ID: 38262317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of the prospects, efficacy and sustainability of nanotechnology-based approaches for oil spill remediation.
    Prajapat R; Yadav H; Shaik AH; Kiran B; Kanchi RS; Shaik S; Said Z; Chandan MR; Chakraborty S
    Waste Manag Res; 2024 Jun; ():734242X241257095. PubMed ID: 38915231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired, Mechano-Regulated Interfaces for Rationally Designed, Dynamically Controlled Collection of Oil Spills from Water.
    Li Y; Zhu D; Handschuh-Wang S; Lv G; Wang J; Li T; Chen C; He C; Zhang J; Liu Y; Yang B; Zhou X
    Glob Chall; 2017 Apr; 1(3):1600014. PubMed ID: 31565266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conversion of irradiated LLDPE waste into sustainable sponge-like compounds: a novel approach for efficient trace-level oil-water removal.
    Ghobashy MM; Gayed HM
    Sci Rep; 2024 Feb; 14(1):4833. PubMed ID: 38413688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inside-out templating: A strategy to decorate helical carbon nanotubes and 2D MoS
    Worajittiphon P; Majan P; Wangkawong K; Somsunan R; Jantrawut P; Panraksa P; Chaiwarit T; Srithep Y; Sommano SR; Jantanasakulwong K; Rachtanapun P
    Int J Biol Macromol; 2024 Jun; 273(Pt 2):133119. PubMed ID: 38880452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile synthesis of porous graphene for efficient water and wastewater treatment.
    Tabish TA; Memon FA; Gomez DE; Horsell DW; Zhang S
    Sci Rep; 2018 Jan; 8(1):1817. PubMed ID: 29379045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable Multifunctional Ultra-thin Graphite Sponge: Free-standing, Superporous, Superhydrophobic, Oleophilic Architecture with Ferromagnetic Properties for Environmental Cleaning.
    Bay HH; Patino D; Mutlu Z; Romero P; Ozkan M; Ozkan CS
    Sci Rep; 2016 Feb; 6():21858. PubMed ID: 26908346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing super-fast trimodal sponges using recycled polypropylene for organics cleanup.
    Saleem J; Moghal ZKB; McKay G
    Sci Rep; 2023 Aug; 13(1):14163. PubMed ID: 37644209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of porosity and pore size of metal reinforced carbon nanotube membranes.
    Dumee L; Velleman L; Sears K; Hill M; Schutz J; Finn N; Duke M; Gray S
    Membranes (Basel); 2010 Dec; 1(1):25-36. PubMed ID: 24957493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Transient Thermoacoustic Characteristics and Performance in Carbon Nanotube Sponge Underwater Transducers.
    Qi Q; Li Z; Yin H; Feng Y; Zhou Z; Rong D
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.