BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 32199228)

  • 1. Precision medicine - networks to the rescue.
    Yadav A; Vidal M; Luck K
    Curr Opin Biotechnol; 2020 Jun; 63():177-189. PubMed ID: 32199228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating molecular networks with genetic variant interpretation for precision medicine.
    Capriotti E; Ozturk K; Carter H
    Wiley Interdiscip Rev Syst Biol Med; 2019 May; 11(3):e1443. PubMed ID: 30548534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Working toward precision medicine: Predicting phenotypes from exomes in the Critical Assessment of Genome Interpretation (CAGI) challenges.
    Daneshjou R; Wang Y; Bromberg Y; Bovo S; Martelli PL; Babbi G; Lena PD; Casadio R; Edwards M; Gifford D; Jones DT; Sundaram L; Bhat RR; Li X; Pal LR; Kundu K; Yin Y; Moult J; Jiang Y; Pejaver V; Pagel KA; Li B; Mooney SD; Radivojac P; Shah S; Carraro M; Gasparini A; Leonardi E; Giollo M; Ferrari C; Tosatto SCE; Bachar E; Azaria JR; Ofran Y; Unger R; Niroula A; Vihinen M; Chang B; Wang MH; Franke A; Petersen BS; Pirooznia M; Zandi P; McCombie R; Potash JB; Altman RB; Klein TE; Hoskins RA; Repo S; Brenner SE; Morgan AA
    Hum Mutat; 2017 Sep; 38(9):1182-1192. PubMed ID: 28634997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VIPdb, a genetic Variant Impact Predictor Database.
    Hu Z; Yu C; Furutsuki M; Andreoletti G; Ly M; Hoskins R; Adhikari AN; Brenner SE
    Hum Mutat; 2019 Sep; 40(9):1202-1214. PubMed ID: 31283070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network-based cancer precision medicine: A new emerging paradigm.
    Tan A; Huang H; Zhang P; Li S
    Cancer Lett; 2019 Aug; 458():39-45. PubMed ID: 31125640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning from Metabolic Networks: Current Trends and Future Directions for Precision Medicine.
    Granata I; Manzo M; Kusumastuti A; Guarracino MR
    Curr Med Chem; 2021; 28(32):6619-6653. PubMed ID: 33334277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathway networks generated from human disease phenome.
    Cirincione AG; Clark KL; Kann MG
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):75. PubMed ID: 30255817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved pathogenicity prediction for rare human missense variants.
    Wu Y; Li R; Sun S; Weile J; Roth FP
    Am J Hum Genet; 2021 Oct; 108(10):1891-1906. PubMed ID: 34551312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the ExAC data set for the presence of individuals with pathogenic genotypes implicated in severe Mendelian pediatric disorders.
    Tarailo-Graovac M; Zhu JYA; Matthews A; van Karnebeek CDM; Wasserman WW
    Genet Med; 2017 Dec; 19(12):1300-1308. PubMed ID: 28471432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison and optimization of in silico algorithms for predicting the pathogenicity of sodium channel variants in epilepsy.
    Holland KD; Bouley TM; Horn PS
    Epilepsia; 2017 Jul; 58(7):1190-1198. PubMed ID: 28518218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Network-Based Cancer Drug Discovery: From Integrated Multi-Omics Approaches to Precision Medicine.
    Turanli B; Karagoz K; Gulfidan G; Sinha R; Mardinoglu A; Arga KY
    Curr Pharm Des; 2018; 24(32):3778-3790. PubMed ID: 30398107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. KVarPredDB: a database for predicting pathogenicity of missense sequence variants of keratin genes associated with genodermatoses.
    Ying Y; Lu L; Banerjee S; Xu L; Zhao Q; Wu H; Li R; Xu X; Yu H; Neculai D; Xi Y; Yang F; Qin J; Li C
    Hum Genomics; 2020 Dec; 14(1):45. PubMed ID: 33287903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep phenotyping for precision medicine in Parkinson's disease.
    Schalkamp AK; Rahman N; Monzón-Sandoval J; Sandor C
    Dis Model Mech; 2022 Jun; 15(6):. PubMed ID: 35647913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision medicine for pancreatic diseases.
    Shelton CA; Whitcomb DC
    Curr Opin Gastroenterol; 2020 Sep; 36(5):428-436. PubMed ID: 32740003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precision Medicine in the Management of Dilated Cardiomyopathy: JACC State-of-the-Art Review.
    Fatkin D; Huttner IG; Kovacic JC; Seidman JG; Seidman CE
    J Am Coll Cardiol; 2019 Dec; 74(23):2921-2938. PubMed ID: 31806137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-silico phenotype prediction by normal mode variant analysis in TUBB4A-related disease.
    Fellner A; Goldberg Y; Lev D; Basel-Salmon L; Shor O; Benninger F
    Sci Rep; 2022 Jan; 12(1):58. PubMed ID: 34997144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Founder variants and population genomes-Toward precision medicine.
    Jain A; Sharma D; Bajaj A; Gupta V; Scaria V
    Adv Genet; 2021; 107():121-152. PubMed ID: 33641745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The current state of clinical interpretation of sequence variants.
    Hoskinson DC; Dubuc AM; Mason-Suares H
    Curr Opin Genet Dev; 2017 Feb; 42():33-39. PubMed ID: 28157586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.