BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32199270)

  • 1. Inhibition of α-chymotrypsin by pristine single-wall carbon nanotubes: Clogging up the active site.
    Di Giosia M; Marforio TD; Cantelli A; Valle F; Zerbetto F; Su Q; Wang H; Calvaresi M
    J Colloid Interface Sci; 2020 Jul; 571():174-184. PubMed ID: 32199270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Snapshots of the Fragmentation for C
    Lee JY; Lee C; Osawa E; Choi JW; Sur JC; Lee KH
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33920291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of non-covalent single-walled carbon nanotube functionalization with surfactant peptides.
    Barzegar A; Mansouri A; Azamat J
    J Mol Graph Model; 2016 Mar; 64():75-84. PubMed ID: 26811869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the co-loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single-walled carbon nanotubes by molecular dynamics simulations.
    Karnati KR; Wang Y
    Phys Chem Chem Phys; 2018 Apr; 20(14):9389-9400. PubMed ID: 29565091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized carbon nanotubes as an alternative to traditional anti-HIV-1 protease inhibitors: An understanding towards Nano-medicine development through MD simulations.
    Panda M; Purohit P; Wang Y; Meher BR
    J Mol Graph Model; 2022 Dec; 117():108280. PubMed ID: 35963109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatics-mediated α-chymotrypsin inhibition by functionalized single-walled carbon nanotubes.
    Zhao D; Zhou J
    Phys Chem Chem Phys; 2017 Jan; 19(2):986-995. PubMed ID: 27781229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational MitoTarget Scanning Based on Topological Vacancies of Single-Walled Carbon Nanotubes with the Human Mitochondrial Voltage-Dependent Anion Channel (hVDAC1).
    González-Durruthy M; Monserrat JM; Viera de Oliveira P; Fagan SB; Werhli AV; Machado K; Melo A; González-Díaz H; Concu R; D S Cordeiro MN
    Chem Res Toxicol; 2019 Apr; 32(4):566-577. PubMed ID: 30868869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sharper and faster "nano darts" kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube.
    Liu S; Wei L; Hao L; Fang N; Chang MW; Xu R; Yang Y; Chen Y
    ACS Nano; 2009 Dec; 3(12):3891-902. PubMed ID: 19894705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy.
    Gerasimenko AY; Ten GN; Ryabkin DI; Shcherbakova NE; Morozova EA; Ichkitidze LP
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117682. PubMed ID: 31672377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actin reorganization through dynamic interactions with single-wall carbon nanotubes.
    Shams H; Holt BD; Mahboobi SH; Jahed Z; Islam MF; Dahl KN; Mofrad MR
    ACS Nano; 2014 Jan; 8(1):188-97. PubMed ID: 24351114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Sodium Dodecyl Sulfate Adsorption on the Behavior of Water inside Single Walled Carbon Nanotubes with Dissipative Particle Dynamics Simulation.
    Vo MD; Papavassiliou DV
    Molecules; 2016 Apr; 21(4):500. PubMed ID: 27092476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arginine side chains as a dispersant for individual single-wall carbon nanotubes.
    Hirano A; Tanaka T; Kataura H; Kameda T
    Chemistry; 2014 Apr; 20(17):4922-30. PubMed ID: 24711170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of human serum albumin to single-walled carbon nanotubes activated neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes.
    Lu N; Li J; Tian R; Peng YY
    Chem Res Toxicol; 2014 Jun; 27(6):1070-7. PubMed ID: 24870066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the interaction of single-walled carbon nanotube (SWCNT) on estrogen receptor: A combined molecular dynamics and experimental study.
    Liu X; Liu T; Song J; Hai Y; Luan F; Zhang H; Yuan Y; Li H; Zhao C
    Ecotoxicol Environ Saf; 2019 May; 172():373-379. PubMed ID: 30731268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the interactions of human follicle stimulating hormone with single-walled carbon nanotubes by molecular dynamics simulation and free energy analysis.
    Mahmoodi Y; Mehrnejad F; Khalifeh K
    Eur Biophys J; 2018 Jan; 47(1):49-57. PubMed ID: 28620743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unzipping and binding of small interfering RNA with single walled carbon nanotube: a platform for small interfering RNA delivery.
    Santosh M; Panigrahi S; Bhattacharyya D; Sood AK; Maiti PK
    J Chem Phys; 2012 Feb; 136(6):065106. PubMed ID: 22360226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-protein interactions between SWCNT/chitosan/EGF and EGF receptor: a model of drug delivery system.
    Rungnim C; Rungrotmongkol T; Kungwan N; Hannongbua S
    J Biomol Struct Dyn; 2016 Sep; 34(9):1919-29. PubMed ID: 26381241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of plasma proteins onto PEGylated single-walled carbon nanotubes: The effects of protein shape, PEG size and grafting density.
    Lee H
    J Mol Graph Model; 2017 Aug; 75():1-8. PubMed ID: 28501530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of fullerene (C60), multi-wall carbon nanotubes (MWCNT), single wall carbon nanotubes (SWCNT) and hydroxyl and carboxyl modified single wall carbon nanotubes on riverine microbial communities.
    Lawrence JR; Waiser MJ; Swerhone GD; Roy J; Tumber V; Paule A; Hitchcock AP; Dynes JJ; Korber DR
    Environ Sci Pollut Res Int; 2016 May; 23(10):10090-102. PubMed ID: 26867687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersion quality of single-walled carbon nanotubes reveals the recognition sequence of DNA.
    Ke F; Chen J; Wu R; Chen Y
    Nanotechnology; 2020 Apr; 31(25):255708. PubMed ID: 32150741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.