These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32199288)

  • 1. Optimizing Group Transfer Catalysis by Copper Complex with Redox-Active Ligand in an Entatic State.
    Ren Y; Forté J; Cheaib K; Vanthuyne N; Fensterbank L; Vezin H; Orio M; Blanchard S; Desage-El Murr M
    iScience; 2020 Mar; 23(3):100955. PubMed ID: 32199288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter- and Intramolecular Electron Transfer in Copper Complexes: Electronic Entatic State with Redox-Active Guanidine Ligands.
    Schrempp DF; Leingang S; Schnurr M; Kaifer E; Wadepohl H; Himmel HJ
    Chemistry; 2017 Oct; 23(55):13607-13611. PubMed ID: 28771843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological concepts for catalysis and reactivity: empowering bioinspiration.
    Das A; Hessin C; Ren Y; Desage-El Murr M
    Chem Soc Rev; 2020 Dec; 49(23):8840-8867. PubMed ID: 33107878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Molecular Proceedings of Biological Hydrogen Turnover.
    Haumann M; Stripp ST
    Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper-Catalyzed Aziridination with Redox-Active Ligands: Molecular Spin Catalysis.
    Ren Y; Cheaib K; Jacquet J; Vezin H; Fensterbank L; Orio M; Blanchard S; Desage-El Murr M
    Chemistry; 2018 Apr; 24(20):5086-5090. PubMed ID: 29356131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypothesis: entatic versus ecstatic states in metalloproteins.
    Hagen WR
    Metallomics; 2019 Nov; 11(11):1768-1778. PubMed ID: 31616892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying Entatic States in Photophysical Processes: Applications to Copper Photosensitizers.
    Stroscio GD; Ribson RD; Hadt RG
    Inorg Chem; 2019 Dec; 58(24):16800-16817. PubMed ID: 31769293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclophanes as Platforms for Reactive Multimetallic Complexes.
    Ferreira RB; Murray LJ
    Acc Chem Res; 2019 Feb; 52(2):447-455. PubMed ID: 30668108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Type 1 Blue Copper Site: From Electron Transfer to Biological Function.
    Arcos-López T; Schuth N; Quintanar L
    Met Ions Life Sci; 2020 Mar; 20():. PubMed ID: 32851824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and analysis of a semi-quantitative energy profile for the reaction catalyzed by the radical enzyme galactose oxidase.
    Wachter RM; Branchaud BP
    Biochim Biophys Acta; 1998 Apr; 1384(1):43-54. PubMed ID: 9602051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimetallic redox synergy in oxidative palladium catalysis.
    Powers DC; Ritter T
    Acc Chem Res; 2012 Jun; 45(6):840-50. PubMed ID: 22029861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transferring the entatic-state principle to copper photochemistry.
    Dicke B; Hoffmann A; Stanek J; Rampp MS; Grimm-Lebsanft B; Biebl F; Rukser D; Maerz B; Göries D; Naumova M; Biednov M; Neuber G; Wetzel A; Hofmann SM; Roedig P; Meents A; Bielecki J; Andreasson J; Beyerlein KR; Chapman HN; Bressler C; Zinth W; Rübhausen M; Herres-Pawlis S
    Nat Chem; 2018 Mar; 10(3):355-362. PubMed ID: 29461525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct evidence for a geometrically constrained "entatic state" effect on copper(II/I) electron-transfer kinetics as manifested in metastable intermediates.
    Yu Q; Salhi CA; Ambundo EA; Heeg MJ; Ochrymowycz LA; Rorabacher DB
    J Am Chem Soc; 2001 Jun; 123(24):5720-9. PubMed ID: 11403604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spiers Memorial Lecture: activating metal sites for biological electron transfer.
    Solomon EI; Jose A
    Faraday Discuss; 2022 May; 234(0):9-30. PubMed ID: 35133385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A definitive example of a geometric "entatic state" effect: electron-transfer kinetics for a copper(II/I) complex involving A quinquedentate macrocyclic trithiaether-bipyridine ligand.
    Chaka G; Sonnenberg JL; Schlegel HB; Heeg MJ; Jaeger G; Nelson TJ; Ochrymowycz LA; Rorabacher DB
    J Am Chem Soc; 2007 Apr; 129(16):5217-27. PubMed ID: 17391036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an infrared spectroscopic approach for studying metalloenzyme active site chemistry under direct electrochemical control.
    Healy AJ; Reeve HA; Vincent KA
    Faraday Discuss; 2011; 148():345-57; discussion 421-41. PubMed ID: 21322492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theory for bioinorganic chemical reactivity of oxometal complexes and analogous oxidants: the exchange and orbital-selection rules.
    Usharani D; Janardanan D; Li C; Shaik S
    Acc Chem Res; 2013 Feb; 46(2):471-82. PubMed ID: 23210564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.
    Jones JS; Gabbaï FP
    Acc Chem Res; 2016 May; 49(5):857-67. PubMed ID: 27092722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper catalysis with redox-active ligands.
    Das A; Ren Y; Hessin C; Desage-El Murr M
    Beilstein J Org Chem; 2020; 16():858-870. PubMed ID: 32461767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.