These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 32199429)
1. Formic acid adsorption and decomposition on clean and atomic oxygen pre-covered Cu(100) surfaces. Li G; Guo W; Zhou X; Yu X; Zhu J J Chem Phys; 2020 Mar; 152(11):114703. PubMed ID: 32199429 [TBL] [Abstract][Full Text] [Related]
2. The roles of step-site and zinc in surface chemistry of formic acid on clean and Zn-modified Cu(111) and Cu(997) surfaces studied by HR-XPS, TPD, and IRAS. Shiozawa Y; Koitaya T; Mukai K; Yoshimoto S; Yoshinobu J J Chem Phys; 2020 Jan; 152(4):044703. PubMed ID: 32007070 [TBL] [Abstract][Full Text] [Related]
3. Assisted deprotonation of formic acid on Cu(111) and self-assembly of 1D chains. Baber AE; Mudiyanselage K; Senanayake SD; Beatriz-Vidal A; Luck KA; Sykes EC; Liu P; Rodriguez JA; Stacchiola DJ Phys Chem Chem Phys; 2013 Aug; 15(29):12291-8. PubMed ID: 23775138 [TBL] [Abstract][Full Text] [Related]
4. Quantitative analysis of desorption and decomposition kinetics of formic acid on Cu(111): The importance of hydrogen bonding between adsorbed species. Shiozawa Y; Koitaya T; Mukai K; Yoshimoto S; Yoshinobu J J Chem Phys; 2015 Dec; 143(23):234707. PubMed ID: 26696070 [TBL] [Abstract][Full Text] [Related]
5. Role of Intermolecular Interactions in the Catalytic Reaction of Formic Acid on Cu(111). Shiotari A; Putra SEM; Shiozawa Y; Hamamoto Y; Inagaki K; Morikawa Y; Sugimoto Y; Yoshinobu J; Hamada I Small; 2021 May; 17(20):e2008010. PubMed ID: 33759365 [TBL] [Abstract][Full Text] [Related]
6. Lateral ordering of PTCDA on the clean and the oxygen pre-covered Cu(100) surface investigated by scanning tunneling microscopy and low energy electron diffraction. Gärtner S; Fiedler B; Bauer O; Marele A; Sokolowski MM Beilstein J Org Chem; 2014; 10():2055-64. PubMed ID: 25246964 [TBL] [Abstract][Full Text] [Related]
7. Kinetic hindrance during the surface oxidation of Cu(100)-c(10x2)-Ag. Lahtonen K; Lampimäki M; Hirsimäki M; Valden M J Chem Phys; 2008 Nov; 129(19):194707. PubMed ID: 19026081 [TBL] [Abstract][Full Text] [Related]
8. Adsorption and reactions of propenoic acid and 2-fluoropropanoic acid on Cu(100) and O/Cu(100). Lin HP; Yang ZX; Lee SH; Chen TY; Chen YJ; Chen YH; Chen GJ; Zhan SX; Lin JL J Chem Phys; 2019 Apr; 150(16):164703. PubMed ID: 31042892 [TBL] [Abstract][Full Text] [Related]
9. Temperature evolution of structure and bonding of formic acid and formate on fully oxidized and highly reduced CeO2(111). Gordon WO; Xu Y; Mullins DR; Overbury SH Phys Chem Chem Phys; 2009 Dec; 11(47):11171-83. PubMed ID: 20024386 [TBL] [Abstract][Full Text] [Related]
10. 1,2-Dibromoethane on Cu(100): bonding structure and transformation to C2H4. Lin JL; Lin YS; Shih JJ; Kuo KH; Lin SK; Wu TS; Shiu MY J Chem Phys; 2011 Aug; 135(6):064706. PubMed ID: 21842948 [TBL] [Abstract][Full Text] [Related]
11. Structure of the Clean and Oxygen-Covered Cu(100) Surface at Room Temperature in the Presence of Methanol Vapor in the 10-200 mTorr Pressure Range. Eren B; Kersell H; Weatherup RS; Heine C; Crumlin EJ; Friend CM; Salmeron MB J Phys Chem B; 2018 Jan; 122(2):548-554. PubMed ID: 28749680 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of CO2 and coadsorption of H and CO2 on potassium-promoted Cu(115). Onsgaard J; Hoffmann SV; Møller P; Godowski PJ; Wagner JB; Paolucci G; Baraldi A; Comelli G; Groso A Chemphyschem; 2003 Apr; 4(5):466-73. PubMed ID: 12785260 [TBL] [Abstract][Full Text] [Related]
13. Oxygen adsorption-induced nanostructures and island formation on Cu{100}: Bridging the gap between the formation of surface confined oxygen chemisorption layer and oxide formation. Lahtonen K; Hirsimäki M; Lampimäki M; Valden M J Chem Phys; 2008 Sep; 129(12):124703. PubMed ID: 19045044 [TBL] [Abstract][Full Text] [Related]
14. Adsorption and reactions of ClCH2CH2OH on clean and oxygen-precovered Cu(100): experimental and computational studies. Fu TW; Liao YH; Chen CY; Chang PT; Wang CY; Lin JL J Phys Chem B; 2005 Oct; 109(40):18921-8. PubMed ID: 16853436 [TBL] [Abstract][Full Text] [Related]
15. Energetics of formic acid conversion to adsorbed formates on Pt(111) by transient calorimetry. Silbaugh TL; Karp EM; Campbell CT J Am Chem Soc; 2014 Mar; 136(10):3964-71. PubMed ID: 24512006 [TBL] [Abstract][Full Text] [Related]
17. Reaction pathways of 2-iodoacetic acid on Cu(100): coverage-dependent competition between C-I bond scission and COOH deprotonation and identification of surface intermediates. Lin YS; Lin JS; Liao YH; Yang CM; Kuo CW; Lin HP; Fan LJ; Yang YW; Lin JL Langmuir; 2010 Jun; 26(11):8218-25. PubMed ID: 20356026 [TBL] [Abstract][Full Text] [Related]
18. Observation of Fano line shapes in infrared vibrational spectra of CO2 adsorbed on Cu(997) and Cu(111). Koitaya T; Shiozawa Y; Mukai K; Yoshimoto S; Yoshinobu J J Chem Phys; 2016 Feb; 144(5):054703. PubMed ID: 26851930 [TBL] [Abstract][Full Text] [Related]
19. Hydrogenation of Formate Species Using Atomic Hydrogen on a Cu(111) Model Catalyst. Takeyasu K; Sawaki Y; Imabayashi T; Putra SEM; Halim HH; Quan J; Hamamoto Y; Hamada I; Morikawa Y; Kondo T; Fujitani T; Nakamura J J Am Chem Soc; 2022 Jul; 144(27):12158-12166. PubMed ID: 35762507 [TBL] [Abstract][Full Text] [Related]