These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 32199568)

  • 1. Age-related differences in effects of non-driving related tasks on takeover performance in automated driving.
    Wu Y; Kihara K; Hasegawa K; Takeda Y; Sato T; Akamatsu M; Kitazaki S
    J Safety Res; 2020 Feb; 72():231-238. PubMed ID: 32199568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From partial and high automation to manual driving: Relationship between non-driving related tasks, drowsiness and take-over performance.
    Naujoks F; Höfling S; Purucker C; Zeeb K
    Accid Anal Prev; 2018 Dec; 121():28-42. PubMed ID: 30205284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related differences in takeover performance: A comparative analysis of older and younger drivers in prolonged partially automated driving.
    Pan H; Payre W; Xu J; Koppel S
    Traffic Inj Prev; 2024; 25(7):968-975. PubMed ID: 38860883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Task-Induced Fatigue in Prolonged Conditional Automated Driving.
    Jarosch O; Bellem H; Bengler K
    Hum Factors; 2019 Nov; 61(7):1186-1199. PubMed ID: 30657711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of scheduled manual driving on drowsiness and response to take over request: A simulator study towards understanding drivers in automated driving.
    Wu Y; Kihara K; Takeda Y; Sato T; Akamatsu M; Kitazaki S
    Accid Anal Prev; 2019 Mar; 124():202-209. PubMed ID: 30665055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noncritical State Transitions During Conditionally Automated Driving on German Freeways: Effects of Non-Driving Related Tasks on Takeover Time and Takeover Quality.
    Naujoks F; Purucker C; Wiedemann K; Marberger C
    Hum Factors; 2019 Jun; 61(4):596-613. PubMed ID: 30689440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age differences in the takeover of vehicle control and engagement in non-driving-related activities in simulated driving with conditional automation.
    Clark H; Feng J
    Accid Anal Prev; 2017 Sep; 106():468-479. PubMed ID: 27686942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of different takeover request interfaces on takeover behavior and performance during conditionally automated driving.
    Ou YK; Huang WX; Fang CW
    Accid Anal Prev; 2021 Nov; 162():106425. PubMed ID: 34601181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of non-driving related tasks on the development of driver sleepiness and takeover performances in prolonged automated driving.
    Pan H; He H; Wang Y; Cheng Y; Dai Z
    J Safety Res; 2023 Sep; 86():148-163. PubMed ID: 37718042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral Changes to Repeated Takeovers in Highly Automated Driving: Effects of the Takeover-Request Design and the Nondriving-Related Task Modality.
    Roche F; Somieski A; Brandenburg S
    Hum Factors; 2019 Aug; 61(5):839-849. PubMed ID: 30517032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promote or inhibit: An inverted U-shaped effect of workload on driver takeover performance.
    Ma S; Zhang W; Yang Z; Kang C; Wu C; Chai C; Shi J; Li H
    Traffic Inj Prev; 2020; 21(7):482-487. PubMed ID: 32822218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Timing of Disengagement From Nondriving Related Tasks in Scheduled Takeovers With Pre-Alerts: An Analysis of Takeover-Related Measures.
    Bai J; Sun X; Cao S; Wang Q; Wu J
    Hum Factors; 2024 Dec; 66(12):2669-2690. PubMed ID: 38207243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driver distraction and its effects on partially automated driving performance: A driving simulator study among young-experienced drivers.
    Zangi N; Srour-Zreik R; Ridel D; Chasidim H; Borowsky A
    Accid Anal Prev; 2022 Mar; 166():106565. PubMed ID: 35032704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of non-driving related tasks while operating automated driving systems (ADS): A systematic review.
    Hungund AP; Kumar Pradhan A
    Accid Anal Prev; 2023 Aug; 188():107076. PubMed ID: 37150132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is driving experience all that matters? Drivers' takeover performance in conditionally automated driving.
    Zhang N; Fard M; Davy JL; Parida S; Robinson SR
    J Safety Res; 2023 Dec; 87():323-331. PubMed ID: 38081705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing drivers' response during automated driver support system failures with non-driving tasks.
    Shen S; Neyens DM
    J Safety Res; 2017 Jun; 61():149-155. PubMed ID: 28454860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In a heart beat: Using driver's physiological changes to determine the quality of a takeover in highly automated vehicles.
    Alrefaie MT; Summerskill S; Jackon TW
    Accid Anal Prev; 2019 Oct; 131():180-190. PubMed ID: 31302486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of non-driving related postures on takeover performance during conditionally automated driving.
    Zhao M; Bellet T; Richard B; Giralt A; Beurier G; Wang X
    Accid Anal Prev; 2024 Dec; 208():107793. PubMed ID: 39321744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of various auditory takeover requests: A simulated driving study considering the modality of non-driving-related tasks.
    Chai C; Lei Y; Wei H; Wu C; Zhang W; Hansen P; Fan H; Shi J
    Appl Ergon; 2024 Jul; 118():104252. PubMed ID: 38417230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The monitoring requests on young driver's fatigue and take-over performance in prolonged conditional automated driving.
    Yin J; Shao H; Zhang X
    J Safety Res; 2024 Feb; 88():285-292. PubMed ID: 38485370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.