These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32200167)

  • 1. Equilibrium clustering of colloidal particles at an oil/water interface due to competing long-range interactions.
    Pérez-Juárez D; Sánchez R; Díaz-Leyva P; Kozina A
    J Colloid Interface Sci; 2020 Jul; 571():232-238. PubMed ID: 32200167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and stability of silica particle monolayers at horizontal and vertical octane-water interfaces.
    Horozov TS; Aveyard R; Binks BP; Clint JH
    Langmuir; 2005 Aug; 21(16):7405-12. PubMed ID: 16042472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly and rheology of ellipsoidal particles at interfaces.
    Madivala B; Fransaer J; Vermant J
    Langmuir; 2009 Mar; 25(5):2718-28. PubMed ID: 19437693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of an Additive-Free Particle Spreading Method on Interactions between Charged Colloidal Particles at an Oil/Water Interface.
    Gao P; Yi Z; Xing X; Ngai T; Jin F
    Langmuir; 2016 May; 32(19):4909-16. PubMed ID: 27108987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateral capillary interactions between colloids beneath an oil-water interface that are driven by out-of-plane electrostatic double-layer interactions.
    Park BJ; Lee M; Lee B; Furst EM
    Soft Matter; 2015 Nov; 11(44):8701-6. PubMed ID: 26376957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric-field-induced capillary attraction between like-charged particles at liquid interfaces.
    Nikolaides MG; Bausch AR; Hsu MF; Dinsmore AD; Brenner MP; Gay C; Weitz DA
    Nature; 2002 Nov; 420(6913):299-301. PubMed ID: 12447435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of interaction heterogeneity on colloidal arrangements at a curved oil-water interface.
    Lee M; Lee D; Park BJ
    Soft Matter; 2015 Jan; 11(2):318-23. PubMed ID: 25408473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between polystyrene particles with diameters of several tens to hundreds of micrometers at the oil-water interface.
    Ha Eun L; Kyu Hwan C; Xia M; Dong Woo K; Bum Jun P
    J Colloid Interface Sci; 2020 Feb; 560():838-848. PubMed ID: 31708257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of colloidal particles with capillary interactions.
    Domínguez A; Oettel M; Dietrich S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011402. PubMed ID: 20866615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic interactions between charged and uncharged Brownian colloids at a fluid-fluid interface.
    Dani A; Yeganeh M; Maldarelli C
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):931-945. PubMed ID: 36037716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong collective attraction in colloidal clusters on a liquid-air interface.
    Pergamenshchik VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011407. PubMed ID: 19257035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpretation of interfacial interactions between lenticular particles.
    Choi KH; Lee D; Park BJ
    J Colloid Interface Sci; 2020 Nov; 580():592-600. PubMed ID: 32712468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustering and dynamics of particles in dispersions with competing interactions: theory and simulation.
    Das S; Riest J; Winkler RG; Gompper G; Dhont JKG; Nägele G
    Soft Matter; 2017 Dec; 14(1):92-103. PubMed ID: 29199754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional array of particles originating from dipole-dipole interaction as evidenced by potential curve measurements at vertical oil/water interfaces.
    Sakka T; Kozawa D; Tsuchiya K; Sugiman N; Øye G; Fukami K; Nishi N; Ogata YH
    Phys Chem Chem Phys; 2014 Aug; 16(32):16976-84. PubMed ID: 25005863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weak electrolyte dependence in the repulsion of colloids at an oil-water interface.
    Wirth CL; Furst EM; Vermant J
    Langmuir; 2014 Mar; 30(10):2670-5. PubMed ID: 24598009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability and minimum size of colloidal clusters on a liquid-air interface.
    Pergamenshchik VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021403. PubMed ID: 22463208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous formation of mesostructures in colloidal monolayers trapped at the air-water interface: a simple explanation.
    Fernández-Toledano JC; Moncho-Jordá A; Martínez-López F; Hidalgo-Alvarez R
    Langmuir; 2004 Aug; 20(17):6977-80. PubMed ID: 15301474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2D stokesian simulation of particle aggregation at quiescent air/oil-water interfaces.
    Laal-Dehghani N; Christopher GF
    J Colloid Interface Sci; 2019 Oct; 553():259-268. PubMed ID: 31212226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Eighth Liquid Matter Conference.
    Dellago C; Kahl G; Likos CN
    J Phys Condens Matter; 2012 Jul; 24(28):280301. PubMed ID: 22740596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrahedral calcite crystals facilitate self-assembly at the air-water interface.
    Hashmi SM; Wickman HH; Weitz DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041605. PubMed ID: 16383394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.