BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32200441)

  • 21. Improved Isolation of SlaA and SlaB S-layer proteins in Sulfolobus acidocaldarius.
    Simonin P; Lombard C; Huguet A; Kish A
    Extremophiles; 2020 Jul; 24(4):673-680. PubMed ID: 32494965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of growth temperature and growth phase on the lipid composition of the archaeal membrane from Thermococcus kodakaraensis.
    Matsuno Y; Sugai A; Higashibata H; Fukuda W; Ueda K; Uda I; Sato I; Itoh T; Imanaka T; Fujiwara S
    Biosci Biotechnol Biochem; 2009 Jan; 73(1):104-8. PubMed ID: 19129645
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transfection Studies with Colloidal Systems Containing Highly Purified Bipolar Tetraether Lipids from
    Engelhardt KH; Pinnapireddy SR; Baghdan E; Jedelská J; Bakowsky U
    Archaea; 2017; 2017():8047149. PubMed ID: 28239294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane Adaptations and Cellular Responses of
    Rao A; de Kok NAW; Driessen AJM
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108491
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tetraether archaeal lipids promote long-term survival in extreme conditions.
    Liman GLS; Garcia AA; Fluke KA; Anderson HR; Davidson SC; Welander PV; Santangelo TJ
    Mol Microbiol; 2024 May; 121(5):882-894. PubMed ID: 38372181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity.
    Boyd ES; Hamilton TL; Wang J; He L; Zhang CL
    Front Microbiol; 2013; 4():62. PubMed ID: 23565112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional reconstitution of membrane proteins in monolayer liposomes from bipolar lipids of Sulfolobus acidocaldarius.
    Elferink MG; de Wit JG; Demel R; Driessen AJ; Konings WN
    J Biol Chem; 1992 Jan; 267(2):1375-81. PubMed ID: 1309769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generation of proton-motive force by an archaeal terminal quinol oxidase from Sulfolobus acidocaldarius.
    Gleissner M; Elferink MG; Driessen AJ; Konings WN; Anemüller S; Schäfer G
    Eur J Biochem; 1994 Sep; 224(3):983-90. PubMed ID: 7925423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effects of Temperature and Growth Phase on the Lipidomes of Sulfolobus islandicus and Sulfolobus tokodaii.
    Jensen SM; Neesgaard VL; Skjoldbjerg SL; Brandl M; Ejsing CS; Treusch AH
    Life (Basel); 2015 Aug; 5(3):1539-66. PubMed ID: 26308060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics.
    Jensen SM; Brandl M; Treusch AH; Ejsing CS
    J Mass Spectrom; 2015 Mar; 50(3):476-87. PubMed ID: 25800184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-chain glycerol diether and polyol dialkyl glycerol triether lipids of Sulfolobus acidocaldarius.
    Langworthy TA; Mayberry WR; Smith PF
    J Bacteriol; 1974 Jul; 119(1):106-16. PubMed ID: 4407015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomimetic surface modification with bolaamphiphilic archaeal tetraether lipids via liposome spreading.
    Bücher C; Grosse X; Rothe H; Fiethen A; Kuhn H; Liefeith K
    Biointerphases; 2014 Mar; 9(1):011002. PubMed ID: 24739009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota.
    Chen L; Brügger K; Skovgaard M; Redder P; She Q; Torarinsson E; Greve B; Awayez M; Zibat A; Klenk HP; Garrett RA
    J Bacteriol; 2005 Jul; 187(14):4992-9. PubMed ID: 15995215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compressibilities and volume fluctuations of archaeal tetraether liposomes.
    Chong PL; Sulc M; Winter R
    Biophys J; 2010 Nov; 99(10):3319-26. PubMed ID: 21081080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low permeability of liposomal membranes composed of bipolar tetraether lipids from thermoacidophilic archaebacterium Sulfolobus acidocaldarius.
    Komatsu H; Chong PL
    Biochemistry; 1998 Jan; 37(1):107-15. PubMed ID: 9425030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature and pH controls on glycerol dibiphytanyl glycerol tetraether lipid composition in the hyperthermophilic crenarchaeon Acidilobus sulfurireducens.
    Boyd ES; Pearson A; Pi Y; Li WJ; Zhang YG; He L; Zhang CL; Geesey GG
    Extremophiles; 2011 Jan; 15(1):59-65. PubMed ID: 21125411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liposomes containing lipids from Sulfolobus islandicus withstand intestinal bile salts: An approach for oral drug delivery?
    Jensen SM; Christensen CJ; Petersen JM; Treusch AH; Brandl M
    Int J Pharm; 2015 Sep; 493(1-2):63-9. PubMed ID: 26192627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. First Isolation and Structure Elucidation of GDNT-β-Glu - Tetraether Lipid Fragment from Archaeal Sulfolobus Strains.
    Scholte A; Hübner C; Ströhl D; Scheufler O; Czich S; Börke JM; Hildebrand G; Liefeith K
    ChemistryOpen; 2021 Sep; 10(9):889-895. PubMed ID: 34468091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcium-induced aggregation of archaeal bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius.
    Kanichay R; Boni LT; Cooke PH; Khan TK; Chong PL
    Archaea; 2003 Oct; 1(3):175-83. PubMed ID: 15803663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway.
    Wagner M; Shen L; Albersmeier A; van der Kolk N; Kim S; Cha J; Bräsen C; Kalinowski J; Siebers B; Albers SV
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150511
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.