These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
729 related articles for article (PubMed ID: 32200453)
1. Deep feature-based automatic classification of mammograms. Arora R; Rai PK; Raman B Med Biol Eng Comput; 2020 Jun; 58(6):1199-1211. PubMed ID: 32200453 [TBL] [Abstract][Full Text] [Related]
2. Classification of Benign and Malignant Breast Masses on Mammograms for Large Datasets using Core Vector Machines. Jebamony J; Jacob D Curr Med Imaging; 2020; 16(6):703-710. PubMed ID: 32723242 [TBL] [Abstract][Full Text] [Related]
3. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision. Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257 [TBL] [Abstract][Full Text] [Related]
4. Computer-aided diagnosis of ground glass pulmonary nodule by fusing deep learning and radiomics features. Hu X; Gong J; Zhou W; Li H; Wang S; Wei M; Peng W; Gu Y Phys Med Biol; 2021 Mar; 66(6):065015. PubMed ID: 33596552 [TBL] [Abstract][Full Text] [Related]
5. A Hybridized ELM for Automatic Micro Calcification Detection in Mammogram Images Based on Multi-Scale Features. Melekoodappattu JG; Subbian PS J Med Syst; 2019 May; 43(7):183. PubMed ID: 31093789 [TBL] [Abstract][Full Text] [Related]
6. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Kooi T; van Ginneken B; Karssemeijer N; den Heeten A Med Phys; 2017 Mar; 44(3):1017-1027. PubMed ID: 28094850 [TBL] [Abstract][Full Text] [Related]
7. Computerized classification of malignant and benign microcalcifications on mammograms: texture analysis using an artificial neural network. Chan HP; Sahiner B; Petrick N; Helvie MA; Lam KL; Adler DD; Goodsitt MM Phys Med Biol; 1997 Mar; 42(3):549-67. PubMed ID: 9080535 [TBL] [Abstract][Full Text] [Related]
8. A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology. Qiu Y; Yan S; Gundreddy RR; Wang Y; Cheng S; Liu H; Zheng B J Xray Sci Technol; 2017; 25(5):751-763. PubMed ID: 28436410 [TBL] [Abstract][Full Text] [Related]
9. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography. Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154 [TBL] [Abstract][Full Text] [Related]
10. Deep Convolutional Neural Networks for breast cancer screening. Chougrad H; Zouaki H; Alheyane O Comput Methods Programs Biomed; 2018 Apr; 157():19-30. PubMed ID: 29477427 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Al-Masni MA; Al-Antari MA; Park JM; Gi G; Kim TY; Rivera P; Valarezo E; Choi MT; Han SM; Kim TS Comput Methods Programs Biomed; 2018 Apr; 157():85-94. PubMed ID: 29477437 [TBL] [Abstract][Full Text] [Related]
12. Enhanced breast mass mammography classification approach based on pre-processing and hybridization of transfer learning models. Boudouh SS; Bouakkaz M J Cancer Res Clin Oncol; 2023 Nov; 149(16):14549-14564. PubMed ID: 37567987 [TBL] [Abstract][Full Text] [Related]
13. A swarm optimized neural network system for classification of microcalcification in mammograms. Dheeba J; Selvi ST J Med Syst; 2012 Oct; 36(5):3051-61. PubMed ID: 21947904 [TBL] [Abstract][Full Text] [Related]
14. Detection of masses in mammograms using a one-stage object detector based on a deep convolutional neural network. Jung H; Kim B; Lee I; Yoo M; Lee J; Ham S; Woo O; Kang J PLoS One; 2018; 13(9):e0203355. PubMed ID: 30226841 [TBL] [Abstract][Full Text] [Related]
15. Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model. Tan M; Pu J; Zheng B Int J Comput Assist Radiol Surg; 2014 Nov; 9(6):1005-20. PubMed ID: 24664267 [TBL] [Abstract][Full Text] [Related]
16. Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram. Al-Antari MA; Al-Masni MA; Kim TS Adv Exp Med Biol; 2020; 1213():59-72. PubMed ID: 32030663 [TBL] [Abstract][Full Text] [Related]
17. SVM based system for classification of microcalcifications in digital mammograms. Singh S; Kumar V; Verma HK; Singh D Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4747-50. PubMed ID: 17945853 [TBL] [Abstract][Full Text] [Related]
18. Decision support system for breast cancer detection using mammograms. Ganesan K; Acharya RU; Chua CK; Min LC; Mathew B; Thomas AK Proc Inst Mech Eng H; 2013 Jul; 227(7):721-32. PubMed ID: 23636749 [TBL] [Abstract][Full Text] [Related]
19. Computer-aided diagnosis of contrast-enhanced spectral mammography: A feasibility study. Patel BK; Ranjbar S; Wu T; Pockaj BA; Li J; Zhang N; Lobbes M; Zhang B; Mitchell JR Eur J Radiol; 2018 Jan; 98():207-213. PubMed ID: 29279165 [TBL] [Abstract][Full Text] [Related]
20. A novel machine learning model for breast cancer detection using mammogram images. Kalpana P; Selvy PT Med Biol Eng Comput; 2024 Jul; 62(7):2247-2264. PubMed ID: 38575824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]