These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

729 related articles for article (PubMed ID: 32200453)

  • 21. A multi-task fusion model based on a residual-Multi-layer perceptron network for mammographic breast cancer screening.
    Zhong Y; Piao Y; Tan B; Liu J
    Comput Methods Programs Biomed; 2024 Apr; 247():108101. PubMed ID: 38432087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep Learning Capabilities for the Categorization of Microcalcification.
    Kumar Singh K; Kumar S; Antonakakis M; Moirogiorgou K; Deep A; Kashyap KL; Bajpai MK; Zervakis M
    Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Breast Microcalcification Diagnosis Using Deep Convolutional Neural Network from Digital Mammograms.
    Cai H; Huang Q; Rong W; Song Y; Li J; Wang J; Chen J; Li L
    Comput Math Methods Med; 2019; 2019():2717454. PubMed ID: 30944574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets.
    Antropova N; Huynh BQ; Giger ML
    Med Phys; 2017 Oct; 44(10):5162-5171. PubMed ID: 28681390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep learning networks find unique mammographic differences in previous negative mammograms between interval and screen-detected cancers: a case-case study.
    Hinton B; Ma L; Mahmoudzadeh AP; Malkov S; Fan B; Greenwood H; Joe B; Lee V; Kerlikowske K; Shepherd J
    Cancer Imaging; 2019 Jun; 19(1):41. PubMed ID: 31228956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of mass regions in mammograms by bilateral analysis adapted to breast density using similarity indexes and convolutional neural networks.
    Bandeira Diniz JO; Bandeira Diniz PH; Azevedo Valente TL; Corrêa Silva A; de Paiva AC; Gattass M
    Comput Methods Programs Biomed; 2018 Mar; 156():191-207. PubMed ID: 29428071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative comparison of clustered microcalcifications in for-presentation and for-processing mammograms in full-field digital mammography.
    Wang J; Nishikawa RM; Yang Y
    Med Phys; 2017 Jul; 44(7):3726-3738. PubMed ID: 28477395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Novel Internet of Things Framework Integrated with Real Time Monitoring for Intelligent Healthcare Environment.
    Suresh A; Udendhran R; Balamurgan M; Varatharajan R
    J Med Syst; 2019 May; 43(6):165. PubMed ID: 31053963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A knowledge-driven feature learning and integration method for breast cancer diagnosis on multi-sequence MRI.
    Feng H; Cao J; Wang H; Xie Y; Yang D; Feng J; Chen B
    Magn Reson Imaging; 2020 Jun; 69():40-48. PubMed ID: 32173583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Independent evaluation of computer classification of malignant and benign calcifications in full-field digital mammograms.
    Rana RS; Jiang Y; Schmidt RA; Nishikawa RM; Liu B
    Acad Radiol; 2007 Mar; 14(3):363-70. PubMed ID: 17307670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and Classification of Benign and Malignant Masses based on Subtraction of Temporally Sequential Digital Mammograms.
    Loizidou K; Skouroumouni G; Savvidou G; Constantinidou A; Nikolaou C; Pitris C
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1667-1670. PubMed ID: 36085665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computer aided detection of microcalcifications in digital mammograms.
    Boccignone G; Chianese A; Picariello A
    Comput Biol Med; 2000 Sep; 30(5):267-86. PubMed ID: 10913773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Classification of benign and malignant masses based on Zernike moments.
    Tahmasbi A; Saki F; Shokouhi SB
    Comput Biol Med; 2011 Aug; 41(8):726-35. PubMed ID: 21722886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computer aided detection system for micro calcifications in digital mammograms.
    Mohamed H; Mabrouk MS; Sharawy A
    Comput Methods Programs Biomed; 2014 Oct; 116(3):226-35. PubMed ID: 24909786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis.
    Zhang E; Seiler S; Chen M; Lu W; Gu X
    Phys Med Biol; 2020 Jun; 65(12):125005. PubMed ID: 32155605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification.
    Al-Antari MA; Al-Masni MA; Choi MT; Han SM; Kim TS
    Int J Med Inform; 2018 Sep; 117():44-54. PubMed ID: 30032964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A framework for breast cancer classification using Multi-DCNNs.
    Ragab DA; Attallah O; Sharkas M; Ren J; Marshall S
    Comput Biol Med; 2021 Apr; 131():104245. PubMed ID: 33556893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [A novel ROI extracting technique based on wavelet transform for the detection of micro-calcifications in mammograms].
    Li S; Wan B; Ma Z; Wang R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):360-2. PubMed ID: 15884554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A multi-stage fusion framework to classify breast lesions using deep learning and radiomics features computed from four-view mammograms.
    Jones MA; Sadeghipour N; Chen X; Islam W; Zheng B
    Med Phys; 2023 Dec; 50(12):7670-7683. PubMed ID: 37083190
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Establishment of a deep feature-based classification model for distinguishing benign and malignant breast tumors on full-filed digital mammography].
    Liang C; Li M; Bian Z; Lv W; Zeng D; Ma J
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 Jan; 39(1):88-92. PubMed ID: 30692072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.