These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

729 related articles for article (PubMed ID: 32200453)

  • 41. Evaluation of a New Ensemble Learning Framework for Mass Classification in Mammograms.
    Rahmani Seryasat O; Haddadnia J
    Clin Breast Cancer; 2018 Jun; 18(3):e407-e420. PubMed ID: 29141776
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN).
    Agnes SA; Anitha J; Pandian SIA; Peter JD
    J Med Syst; 2019 Dec; 44(1):30. PubMed ID: 31838610
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Breast Cancer Classification in Automated Breast Ultrasound Using Multiview Convolutional Neural Network with Transfer Learning.
    Wang Y; Choi EJ; Choi Y; Zhang H; Jin GY; Ko SB
    Ultrasound Med Biol; 2020 May; 46(5):1119-1132. PubMed ID: 32059918
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The use of an interactive software program for quantitative characterization of microcalcifications on digitized film-screen mammograms.
    Leichter I; Lederman R; Bamberger P; Novak B; Fields S; Buchbinder SS
    Invest Radiol; 1999 Jun; 34(6):394-400. PubMed ID: 10353031
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Computerized segmentation method for individual calcifications within clustered microcalcifications while maintaining their shapes on magnification mammograms.
    Hizukuri A; Nakayama R; Nakako N; Kawanaka H; Takase H; Yamamoto K; Tsuruoka S
    J Digit Imaging; 2012 Jun; 25(3):377-86. PubMed ID: 21989574
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features.
    Sakai A; Onishi Y; Matsui M; Adachi H; Teramoto A; Saito K; Fujita H
    Radiol Phys Technol; 2020 Mar; 13(1):27-36. PubMed ID: 31686300
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reviewing ensemble classification methods in breast cancer.
    Hosni M; Abnane I; Idri A; Carrillo de Gea JM; Fernández Alemán JL
    Comput Methods Programs Biomed; 2019 Aug; 177():89-112. PubMed ID: 31319964
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Computer aided diagnosis of calcifications in mammograms].
    Li G; Liu H; Cheng J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb; 28(1):170-4. PubMed ID: 21485207
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Retrieval boosted computer-aided diagnosis of clustered microcalcifications for breast cancer.
    Jing H; Yang Y; Nishikawa RM
    Med Phys; 2012 Feb; 39(2):676-85. PubMed ID: 22320777
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI.
    Hu Q; Whitney HM; Giger ML
    Sci Rep; 2020 Jun; 10(1):10536. PubMed ID: 32601367
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient breast cancer mammograms diagnosis using three deep neural networks and term variance.
    Elkorany AS; Elsharkawy ZF
    Sci Rep; 2023 Feb; 13(1):2663. PubMed ID: 36792720
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A multi-context CNN ensemble for small lesion detection.
    Savelli B; Bria A; Molinara M; Marrocco C; Tortorella F
    Artif Intell Med; 2020 Mar; 103():101749. PubMed ID: 32143786
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A divide and conquer approach to maximise deep learning mammography classification accuracies.
    Jaamour A; Myles C; Patel A; Chen SJ; McMillan L; Harris-Birtill D
    PLoS One; 2023; 18(5):e0280841. PubMed ID: 37235566
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model.
    Ko YC; Wey SY; Chen WT; Chang YF; Chen MJ; Chiou SH; Liu CJ; Lee CY
    PLoS One; 2020; 15(5):e0233079. PubMed ID: 32407355
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Breast lesions classifications of mammographic images using a deep convolutional neural network-based approach.
    Mahmood T; Li J; Pei Y; Akhtar F; Rehman MU; Wasti SH
    PLoS One; 2022; 17(1):e0263126. PubMed ID: 35085352
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computer-aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks.
    Moon WK; Lee YW; Ke HH; Lee SH; Huang CS; Chang RF
    Comput Methods Programs Biomed; 2020 Jul; 190():105361. PubMed ID: 32007839
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Skin lesion classification with ensembles of deep convolutional neural networks.
    Harangi B
    J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A New Computer-Aided Diagnosis System with Modified Genetic Feature Selection for BI-RADS Classification of Breast Masses in Mammograms.
    Boumaraf S; Liu X; Ferkous C; Ma X
    Biomed Res Int; 2020; 2020():7695207. PubMed ID: 32462017
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computer assisted recognition of breast cancer in biopsy images via fusion of nucleus-guided deep convolutional features.
    George K; Sankaran P; K PJ
    Comput Methods Programs Biomed; 2020 Oct; 194():105531. PubMed ID: 32422473
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi-task transfer learning deep convolutional neural network: application to computer-aided diagnosis of breast cancer on mammograms.
    Samala RK; Chan HP; Hadjiiski LM; Helvie MA; Cha KH; Richter CD
    Phys Med Biol; 2017 Nov; 62(23):8894-8908. PubMed ID: 29035873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.