BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

851 related articles for article (PubMed ID: 32200544)

  • 1. Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns.
    Kwon EC; Kim JH; Kim NS
    Genes Genomics; 2020 May; 42(5):553-570. PubMed ID: 32200544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of polycistronic transcriptional units and non-canonical introns in green algal chloroplasts based on long-read RNA sequencing data.
    Zou X; Verbruggen H; Li T; Zhu J; Chen Z; He H; Bao S; Sun J
    BMC Genomics; 2021 Apr; 22(1):298. PubMed ID: 33892645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variable presence of the inverted repeat and plastome stability in Erodium.
    Blazier JC; Jansen RK; Mower JP; Govindu M; Zhang J; Weng ML; Ruhlman TA
    Ann Bot; 2016 Jun; 117(7):1209-20. PubMed ID: 27192713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel loss of plastid introns and their maturase in the genus Cuscuta.
    McNeal JR; Kuehl JV; Boore JL; Leebens-Mack J; dePamphilis CW
    PLoS One; 2009 Jun; 4(6):e5982. PubMed ID: 19543388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastome Evolution and Phylogeny of Orchidaceae, With 24 New Sequences.
    Kim YK; Jo S; Cheon SH; Joo MJ; Hong JR; Kwak M; Kim KJ
    Front Plant Sci; 2020; 11():22. PubMed ID: 32153600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales.
    Turmel M; Otis C; Lemieux C
    BMC Biol; 2005 Oct; 3():22. PubMed ID: 16236178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel insights into chloroplast genome evolution in the green macroalgal genus
    Liu F; Chen N; Wang H; Li J; Wang J; Qu F
    Front Plant Sci; 2023; 14():1126175. PubMed ID: 37143870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage.
    Guisinger MM; Kuehl JV; Boore JL; Jansen RK
    Mol Biol Evol; 2011 Jan; 28(1):583-600. PubMed ID: 20805190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of Passiflora subgenus Decaloba.
    Shrestha B; Weng ML; Theriot EC; Gilbert LE; Ruhlman TA; Krosnick SE; Jansen RK
    Mol Phylogenet Evol; 2019 Sep; 138():53-64. PubMed ID: 31129347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolution of chloroplast genome structure in ferns.
    Wolf PG; Roper JM; Duffy AM
    Genome; 2010 Sep; 53(9):731-8. PubMed ID: 20924422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting and Characterizing the Highly Divergent Plastid Genome of the Nonphotosynthetic Parasitic Plant Hydnora visseri (Hydnoraceae).
    Naumann J; Der JP; Wafula EK; Jones SS; Wagner ST; Honaas LA; Ralph PE; Bolin JF; Maass E; Neinhuis C; Wanke S; dePamphilis CW
    Genome Biol Evol; 2016 Jan; 8(2):345-63. PubMed ID: 26739167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calophyllaceae plastomes, their structure and insights in relationships within the clusioids.
    Trad RJ; Cabral FN; Bittrich V; Silva SRD; Amaral MDCED
    Sci Rep; 2021 Oct; 11(1):20712. PubMed ID: 34671062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta).
    Cremen MCM; Leliaert F; Marcelino VR; Verbruggen H
    Genome Biol Evol; 2018 Apr; 10(4):1048-1061. PubMed ID: 29635329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae.
    Hong CP; Park J; Lee Y; Lee M; Park SG; Uhm Y; Lee J; Kim CK
    BMC Genomics; 2017 Aug; 18(1):607. PubMed ID: 28800729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From chloroplasts to "cryptic" plastids: evolution of plastid genomes in parasitic plants.
    Krause K
    Curr Genet; 2008 Sep; 54(3):111-21. PubMed ID: 18696071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues.
    Basu MK; Rogozin IB; Deusch O; Dagan T; Martin W; Koonin EV
    Mol Biol Evol; 2008 Jan; 25(1):111-9. PubMed ID: 17974547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structures.
    Hausner G; Olson R; Simon D; Johnson I; Sanders ER; Karol KG; McCourt RM; Zimmerly S
    Mol Biol Evol; 2006 Feb; 23(2):380-91. PubMed ID: 16267141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene loss, genome rearrangement, and accelerated substitution rates in plastid genome of Hypericum ascyron (Hypericaceae).
    Claude SJ; Park S; Park S
    BMC Plant Biol; 2022 Mar; 22(1):135. PubMed ID: 35321651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plastid phylogenomics resolves infrafamilial relationships of the Styracaceae and sheds light on the backbone relationships of the Ericales.
    Yan M; Fritsch PW; Moore MJ; Feng T; Meng A; Yang J; Deng T; Zhao C; Yao X; Sun H; Wang H
    Mol Phylogenet Evol; 2018 Apr; 121():198-211. PubMed ID: 29360618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plastomes of the green algae
    McManus HA; Sanchez DJ; Karol KG
    PeerJ; 2017; 5():e3325. PubMed ID: 28533973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.