These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32200874)

  • 1. Research Techniques Made Simple: CRISPR Genetic Screens.
    Otten ABC; Sun BK
    J Invest Dermatol; 2020 Apr; 140(4):723-728.e1. PubMed ID: 32200874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research Techniques Made Simple: The Application of CRISPR-Cas9 and Genome Editing in Investigative Dermatology.
    Guitart JR; Johnson JL; Chien WW
    J Invest Dermatol; 2016 Sep; 136(9):e87-e93. PubMed ID: 27542298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic and diagnostic relevance of Crispr technology.
    El Ouar I; Djekoun A
    Biomed Pharmacother; 2021 Jun; 138():111487. PubMed ID: 33774312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next-generation forward genetic screens: uniting high-throughput perturbations with single-cell analysis.
    Morris JA; Sun JS; Sanjana NE
    Trends Genet; 2024 Feb; 40(2):118-133. PubMed ID: 37989654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Editing
    Dehshahri A; Biagioni A; Bayat H; Lee EHC; Hashemabadi M; Fekri HS; Zarrabi A; Mohammadinejad R; Kumar AP
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies.
    Amritha PP; Shah JM
    Mol Genet Genomics; 2021 May; 296(3):485-500. PubMed ID: 33751237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms.
    Javed MR; Sadaf M; Ahmed T; Jamil A; Nawaz M; Abbas H; Ijaz A
    Curr Microbiol; 2018 Dec; 75(12):1675-1683. PubMed ID: 30078067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing CRISPR-Cas systems for bacterial genome editing.
    Selle K; Barrangou R
    Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo.
    Hung SS; Chrysostomou V; Li F; Lim JK; Wang JH; Powell JE; Tu L; Daniszewski M; Lo C; Wong RC; Crowston JG; Pébay A; King AE; Bui BV; Liu GS; Hewitt AW
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3470-6. PubMed ID: 27367513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR screens in plants: approaches, guidelines, and future prospects.
    Gaillochet C; Develtere W; Jacobs TB
    Plant Cell; 2021 May; 33(4):794-813. PubMed ID: 33823021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meeting Report: German Genetics Society-Genome Editing with CRISPR.
    Maier LK; Marchfelder A; Randau L
    Bioessays; 2020 Feb; 42(2):e1900223. PubMed ID: 31853989
    [No Abstract]   [Full Text] [Related]  

  • 14. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

  • 15. Bacterial CRISPR: accomplishments and prospects.
    Peters JM; Silvis MR; Zhao D; Hawkins JS; Gross CA; Qi LS
    Curr Opin Microbiol; 2015 Oct; 27():121-6. PubMed ID: 26363124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR activation screens: navigating technologies and applications.
    Clark T; Waller MA; Loo L; Moreno CL; Denes CE; Neely GG
    Trends Biotechnol; 2024 Aug; 42(8):1017-1034. PubMed ID: 38493051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pooled Lentiviral-Delivery Genetic Screens.
    Piccioni F; Younger ST; Root DE
    Curr Protoc Mol Biol; 2018 Jan; 121():32.1.1-32.1.21. PubMed ID: 29337374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPRi functional genomics in bacteria and its application to medical and industrial research.
    Enright AL; Heelan WJ; Ward RD; Peters JM
    Microbiol Mol Biol Rev; 2024 Jun; 88(2):e0017022. PubMed ID: 38809084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Cpf1: A New Tool for Plant Genome Editing.
    Zaidi SS; Mahfouz MM; Mansoor S
    Trends Plant Sci; 2017 Jul; 22(7):550-553. PubMed ID: 28532598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene editing in dermatology: Harnessing CRISPR for the treatment of cutaneous disease.
    Baker C; Hayden MS
    F1000Res; 2020; 9():281. PubMed ID: 32528662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.