BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32201337)

  • 21. Transcript and protein marker patterns for the identification of steatotic compounds in human HepaRG cells.
    Lichtenstein D; Mentz A; Schmidt FF; Luckert C; Buhrke T; Marx-Stoelting P; Kalinowski J; Albaum SP; Joos TO; Poetz O; Braeuning A
    Food Chem Toxicol; 2020 Nov; 145():111690. PubMed ID: 32810590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical exposure and infant leukaemia: development of an adverse outcome pathway (AOP) for aetiology and risk assessment research.
    Pelkonen O; Terron A; Hernandez AF; Menendez P; Bennekou SH;
    Arch Toxicol; 2017 Aug; 91(8):2763-2780. PubMed ID: 28536863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of Drug Metabolism by the Interplay of Inflammatory Signaling, Steatosis, and Xeno-Sensing Receptors in HepaRG Cells.
    Tanner N; Kubik L; Luckert C; Thomas M; Hofmann U; Zanger UM; Böhmert L; Lampen A; Braeuning A
    Drug Metab Dispos; 2018 Apr; 46(4):326-335. PubMed ID: 29330220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The identification of nuclear receptors associated with hepatic steatosis to develop and extend adverse outcome pathways.
    Mellor CL; Steinmetz FP; Cronin MT
    Crit Rev Toxicol; 2016 Feb; 46(2):138-52. PubMed ID: 26451809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of mixture toxicity of (tri)azoles and their hepatotoxic effects in vitro by means of omics technologies.
    Seeger B; Mentz A; Knebel C; Schmidt F; Bednarz H; Niehaus K; Albaum S; Kalinowski J; Noll T; Steinberg P; Marx-Stoelting P; Heise T
    Arch Toxicol; 2019 Aug; 93(8):2321-2333. PubMed ID: 31254001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Molecular Pathway and AOP Development Using Gene Network Analysis].
    Tanabe S; Hirose A; Whelan M; Yamada T
    Yakugaku Zasshi; 2020; 140(4):485-489. PubMed ID: 32238629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exposure to an environmentally relevant mixture of organochlorine compounds and polychlorinated biphenyls Promotes hepatic steatosis in male Ob/Ob mice.
    Mulligan C; Kondakala S; Yang EJ; Stokes JV; Stewart JA; Kaplan BL; Howell GE
    Environ Toxicol; 2017 Apr; 32(4):1399-1411. PubMed ID: 27533883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Challenge for Adverse Outcome Pathway (AOP)-based Chemical Safety Assessment].
    Yamada T; Ashikaga T; Kojima H; Hirose A
    Yakugaku Zasshi; 2020; 140(4):481-484. PubMed ID: 32238628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adverse outcome pathway development from protein alkylation to liver fibrosis.
    Horvat T; Landesmann B; Lostia A; Vinken M; Munn S; Whelan M
    Arch Toxicol; 2017 Apr; 91(4):1523-1543. PubMed ID: 27542122
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification of an Adverse Outcome Pathway Network by Bayesian Regression and Bayesian Network Modeling.
    Moe SJ; Wolf R; Xie L; Landis WG; Kotamäki N; Tollefsen KE
    Integr Environ Assess Manag; 2021 Jan; 17(1):147-164. PubMed ID: 32965776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Is there a role for the adverse outcome pathway framework to support radiation protection?
    Chauhan V; Said Z; Daka J; Sadi B; Bijlani D; Marchetti F; Beaton D; Gaw A; Li C; Burtt J; Leblanc J; Desrosiers M; Stuart M; Brossard M; Vuong NQ; Wilkins R; Qutob S; McNamee J; Wang Y; Yauk C
    Int J Radiat Biol; 2019 Feb; 95(2):225-232. PubMed ID: 30373433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of an adverse outcome pathway network on chemical-induced cholestasis using an artificial intelligence-assisted data collection and confidence level quantification approach.
    van Ertvelde J; Verhoeven A; Maerten A; Cooreman A; Santos Rodrigues BD; Sanz-Serrano J; Mihajlovic M; Tripodi I; Teunis M; Jover R; Luechtefeld T; Vanhaecke T; Jiang J; Vinken M
    J Biomed Inform; 2023 Sep; 145():104465. PubMed ID: 37541407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells.
    Rogue A; Anthérieu S; Vluggens A; Umbdenstock T; Claude N; de la Moureyre-Spire C; Weaver RJ; Guillouzo A
    Toxicol Appl Pharmacol; 2014 Apr; 276(1):73-81. PubMed ID: 24534255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating fatty liver disease-associated adverse outcome pathways of perfluorooctane sulfonate using a systems toxicology approach.
    Kim M; Kim SH; Choi JY; Park YJ
    Food Chem Toxicol; 2023 Jun; 176():113781. PubMed ID: 37059384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition.
    Terron A; Bal-Price A; Paini A; Monnet-Tschudi F; Bennekou SH; ; Leist M; Schildknecht S
    Arch Toxicol; 2018 Jan; 92(1):41-82. PubMed ID: 29209747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AOP4EUpest: mapping of pesticides in adverse outcome pathways using a text mining tool.
    Jornod F; Rugard M; Tamisier L; Coumoul X; Andersen HR; Barouki R; Audouze K
    Bioinformatics; 2020 Aug; 36(15):4379-4381. PubMed ID: 32467965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adverse Outcome Pathways as Versatile Tools in Liver Toxicity Testing.
    Arnesdotter E; Gijbels E; Dos Santos Rodrigues B; Vilas-Boas V; Vinken M
    Methods Mol Biol; 2022; 2425():521-535. PubMed ID: 35188645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acceleration of murine hepatocyte proliferation by imazalil through the activation of nuclear receptor PXR.
    Yoshimaru S; Shizu R; Tsuruta S; Amaike Y; Kano M; Hosaka T; Sasaki T; Yoshinari K
    J Toxicol Sci; 2018; 43(7):443-450. PubMed ID: 29973476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of molecular initiating events (MIE) using chemical database analysis and nuclear receptor activity assays for screening potential inhalation toxicants.
    Jeong J; Kim J; Choi J
    Regul Toxicol Pharmacol; 2023 Jun; 141():105391. PubMed ID: 37068727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells.
    Pant A; Rondini EA; Kocarek TA
    Toxicol Appl Pharmacol; 2019 Feb; 365():61-70. PubMed ID: 30611723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.