BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 32201368)

  • 1. Minimal residual disease in advanced or metastatic solid cancers: The G0-G1 state and immunotherapy are key to unwinding cancer complexity.
    Nicolini A; Rossi G; Ferrari P; Carpi A
    Semin Cancer Biol; 2022 Feb; 79():68-82. PubMed ID: 32201368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal Residual Disease, Metastasis and Immunity.
    Badia-Ramentol J; Linares J; Gómez-Llonin A; Calon A
    Biomolecules; 2021 Jan; 11(2):. PubMed ID: 33498251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myeloid derived suppressor cells and the release of micro-metastases from dormancy.
    Khadge S; Cole K; Talmadge JE
    Clin Exp Metastasis; 2021 Jun; 38(3):279-293. PubMed ID: 34014424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunotherapy Targeting Myeloid-Derived Suppressor Cells (MDSCs) in Tumor Microenvironment.
    Gao X; Sui H; Zhao S; Gao X; Su Y; Qu P
    Front Immunol; 2020; 11():585214. PubMed ID: 33613512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disseminated cancer cells in breast cancer: Mechanism of dissemination and dormancy and emerging insights on therapeutic opportunities.
    Ramamoorthi G; Kodumudi K; Gallen C; Zachariah NN; Basu A; Albert G; Beyer A; Snyder C; Wiener D; Costa RLB; Czerniecki BJ
    Semin Cancer Biol; 2022 Jan; 78():78-89. PubMed ID: 33626407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of myeloid-derived suppressor cells in metastasis.
    Cole K; Pravoverov K; Talmadge JE
    Cancer Metastasis Rev; 2021 Jun; 40(2):391-411. PubMed ID: 33411082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor dormancy: long-term survival in a hostile environment.
    Quesnel B
    Adv Exp Med Biol; 2013; 734():181-200. PubMed ID: 23143980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor dormancy and cancer stem cells: two sides of the same coin?
    Kleffel S; Schatton T
    Adv Exp Med Biol; 2013; 734():145-79. PubMed ID: 23143979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune dysfunction, minimal residual disease and patient outcome in nonmetastatic cancer: could modulation of immune function improve outcome?
    Murray NP
    Future Oncol; 2021 May; 17(13):1571-1575. PubMed ID: 33626930
    [No Abstract]   [Full Text] [Related]  

  • 10. Myeloid-derived suppressor cells-a new therapeutic target to overcome resistance to cancer immunotherapy.
    Chesney JA; Mitchell RA; Yaddanapudi K
    J Leukoc Biol; 2017 Sep; 102(3):727-740. PubMed ID: 28546500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of Metastatic or High-Risk Solid Cancer Patients by Targeting the Immune System and/or Tumor Burden: Six Cases Reports.
    Nicolini A; Ferrari P; Morganti R; Carpi A
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31795079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of myeloid-derived suppressor cells in tumor recurrence.
    Cole K; Al-Kadhimi Z; Talmadge JE
    Cancer Metastasis Rev; 2023 Mar; 42(1):113-142. PubMed ID: 36640224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gastrointestinal cancer stem cells as targets for innovative immunotherapy.
    Chivu-Economescu M; Necula LG; Matei L; Dragu DL; Neagu AI; Alexiu I; Bleotu C; Diaconu CC
    World J Gastroenterol; 2020 Apr; 26(14):1580-1593. PubMed ID: 32327907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Nanoplatform to Amplify Apoptosis-to-Pyroptosis Immunotherapy via Immunomodulation of Myeloid-Derived Suppressor Cells.
    Zhou S; Shang Q; Ji J; Luan Y
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47407-47417. PubMed ID: 34597015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic prospects of targeting myeloid-derived suppressor cells and immune checkpoints in cancer.
    Toor SM; Elkord E
    Immunol Cell Biol; 2018 Oct; 96(9):888-897. PubMed ID: 29635843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic and Pluripotency Aspects of Disseminated Cancer Cells During Minimal Residual Disease.
    Carlini MJ; Shrivastava N; Sosa MS
    Adv Exp Med Biol; 2018; 1100():1-18. PubMed ID: 30411257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells.
    Payne KK; Keim RC; Graham L; Idowu MO; Wan W; Wang XY; Toor AA; Bear HD; Manjili MH
    J Leukoc Biol; 2016 Sep; 100(3):625-35. PubMed ID: 26928306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of MDSCs-targeting in lung cancer chemo-immunotherapeutics.
    Adah D; Hussain M; Qin L; Qin L; Zhang J; Chen X
    Pharmacol Res; 2016 Aug; 110():25-34. PubMed ID: 27157248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between the immune system and acute myeloid leukemia: A model incorporating promotion of regulatory T cell expansion by leukemic cells.
    Nishiyama Y; Saikawa Y; Nishiyama N
    Biosystems; 2018 Mar; 165():99-105. PubMed ID: 29408212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green propolis increases myeloid suppressor cells and CD4
    Piñeros AR; de Lima MHF; Rodrigues T; Gembre AF; Bertolini TB; Fonseca MD; Berretta AA; Ramalho LNZ; Cunha FQ; Hori JI; Bonato VLD
    J Ethnopharmacol; 2020 Apr; 252():112496. PubMed ID: 31870795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.