These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 32201755)
1. Polymer Nanocomposites Containing Semiconductors as Advanced Materials for EMI Shielding. Sushmita K; Madras G; Bose S ACS Omega; 2020 Mar; 5(10):4705-4718. PubMed ID: 32201755 [TBL] [Abstract][Full Text] [Related]
2. Recent Advances in Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review. Omana L; Chandran A; John RE; Wilson R; George KC; Unnikrishnan NV; Varghese SS; George G; Simon SM; Paul I ACS Omega; 2022 Aug; 7(30):25921-25947. PubMed ID: 35936479 [TBL] [Abstract][Full Text] [Related]
3. Future advances and challenges of nanomaterial-based technologies for electromagnetic interference-based technologies: A review. Karim SS; Murtaza Z; Farrukh S; Umer MA; Ali SS; Younas M; Mubashir M; Saqib S; Ayoub M; Bokhari A; Peter AP; Khoo KS; Ullah S; Show PL Environ Res; 2022 Apr; 205():112402. PubMed ID: 34838569 [TBL] [Abstract][Full Text] [Related]
4. Core-Multishell Heterostructure with Excellent Heat Dissipation for Electromagnetic Interference Shielding. Bhattacharjee Y; Chatterjee D; Bose S ACS Appl Mater Interfaces; 2018 Sep; 10(36):30762-30773. PubMed ID: 30106274 [TBL] [Abstract][Full Text] [Related]
5. Radio-Absorbing Materials Based on Polymer Composites and Their Application to Solving the Problems of Electromagnetic Compatibility. Fionov A; Kraev I; Yurkov G; Solodilov V; Zhukov A; Surgay A; Kuznetsova I; Kolesov V Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35893990 [TBL] [Abstract][Full Text] [Related]
6. Does the Processing Method Resulting in Different States of an Interconnected Network of Multiwalled Carbon Nanotubes in Polymeric Blend Nanocomposites Affect EMI Shielding Properties? Pawar SP; Rzeczkowski P; Pötschke P; Krause B; Bose S ACS Omega; 2018 May; 3(5):5771-5782. PubMed ID: 31458777 [TBL] [Abstract][Full Text] [Related]
7. Review of Polymer Composites with Diverse Nanofillers for Electromagnetic Interference Shielding. Wanasinghe D; Aslani F; Ma G; Habibi D Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32192158 [TBL] [Abstract][Full Text] [Related]
8. Lightweight and flexible hybrid film based on delicate design of electrospun nanofibers for high-performance electromagnetic interference shielding. Huang L; Li J; Li Y; He X; Yuan Y Nanoscale; 2019 Apr; 11(17):8616-8625. PubMed ID: 30994685 [TBL] [Abstract][Full Text] [Related]
9. Optimization of CoFe Anju ; Masař M; Machovský M; Urbánek M; Šuly P; Hanulíková B; Vilčáková J; Kuřitka I; Yadav RS Nanoscale Adv; 2024 Apr; 6(8):2149-2165. PubMed ID: 38633039 [TBL] [Abstract][Full Text] [Related]
10. Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials. Cheng J; Li C; Xiong Y; Zhang H; Raza H; Ullah S; Wu J; Zheng G; Cao Q; Zhang D; Zheng Q; Che R Nanomicro Lett; 2022 Mar; 14(1):80. PubMed ID: 35333993 [TBL] [Abstract][Full Text] [Related]
11. Electromagnetic interference shielding characteristics of carbon nanofiber-polymer composites. Yang Y; Guptal MC; Dudley KL; Lawrence RW J Nanosci Nanotechnol; 2007 Feb; 7(2):549-54. PubMed ID: 17450793 [TBL] [Abstract][Full Text] [Related]
12. Lightweight carbon-red mud hybrid foam toward fire-resistant and efficient shield against electromagnetic interference. Kumar R; Sharma A; Pandey A; Chaudhary A; Dwivedi N; Shafeeq M M; Mondal DP; Srivastava AK Sci Rep; 2020 Jun; 10(1):9913. PubMed ID: 32555266 [TBL] [Abstract][Full Text] [Related]
13. Flexible Nanocomposite Conductors for Electromagnetic Interference Shielding. Nan Z; Wei W; Lin Z; Chang J; Hao Y Nanomicro Lett; 2023 Jul; 15(1):172. PubMed ID: 37420119 [TBL] [Abstract][Full Text] [Related]
14. Highly Transparent and Broadband Electromagnetic Interference Shielding Based on Ultrathin Doped Ag and Conducting Oxides Hybrid Film Structures. Wang H; Ji C; Zhang C; Zhang Y; Zhang Z; Lu Z; Tan J; Guo LJ ACS Appl Mater Interfaces; 2019 Mar; 11(12):11782-11791. PubMed ID: 30817123 [TBL] [Abstract][Full Text] [Related]
15. Highly Stretchable Electromagnetic Interference Shielding Materials Made with Conductive Microcoils Confined to a Honeycomb Structure. Liu C; Cai J; Dang P; Li X; Zhang D ACS Appl Mater Interfaces; 2020 Mar; 12(10):12101-12108. PubMed ID: 32069019 [TBL] [Abstract][Full Text] [Related]
16. Flexible Polydimethylsilane Nanocomposites Enhanced with a Three-Dimensional Graphene/Carbon Nanotube Bicontinuous Framework for High-Performance Electromagnetic Interference Shielding. Zhao S; Yan Y; Gao A; Zhao S; Cui J; Zhang G ACS Appl Mater Interfaces; 2018 Aug; 10(31):26723-26732. PubMed ID: 29989792 [TBL] [Abstract][Full Text] [Related]
17. Stiff, Thermally Stable and Highly Anisotropic Wood-Derived Carbon Composite Monoliths for Electromagnetic Interference Shielding. Yuan Y; Sun X; Yang M; Xu F; Lin Z; Zhao X; Ding Y; Li J; Yin W; Peng Q; He X; Li Y ACS Appl Mater Interfaces; 2017 Jun; 9(25):21371-21381. PubMed ID: 28587446 [TBL] [Abstract][Full Text] [Related]
18. Robust carbon nanotube foam for efficient electromagnetic interference shielding and microwave absorption. Li MZ; Jia LC; Zhang XP; Yan DX; Zhang QC; Li ZM J Colloid Interface Sci; 2018 Nov; 530():113-119. PubMed ID: 29960904 [TBL] [Abstract][Full Text] [Related]
19. Phthalonitrile-Based Carbon Foam with High Specific Mechanical Strength and Superior Electromagnetic Interference Shielding Performance. Zhang L; Liu M; Roy S; Chu EK; See KY; Hu X ACS Appl Mater Interfaces; 2016 Mar; 8(11):7422-30. PubMed ID: 26910405 [TBL] [Abstract][Full Text] [Related]
20. Functional and Structural Facts of Effective Electromagnetic Interference Shielding Materials: A Review. Orasugh JT; Ray SS ACS Omega; 2023 Mar; 8(9):8134-8158. PubMed ID: 36910979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]