These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32201777)

  • 41. pH effects in plasmin-catalysed hydrolysis of alpha-N-benzoyl-L-arginine compounds.
    Christensen U
    Biochim Biophys Acta; 1975 Aug; 397(2):459-67. PubMed ID: 239753
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The pH dependence of pre-steady-state and steady-state kinetics for the porcine pancreatic beta-kallikrein-B-catalyzed hydrolysis of N-alpha-carbobenzoxy-L-arginine p-nitrophenyl ester.
    Ascenzi P; Amiconi G; Bolognesi M; Guarneri M; Menegatti E; Antonini E
    Biochim Biophys Acta; 1984 Feb; 785(1-2):75-80. PubMed ID: 6559602
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [The pH-dependent catalytic reaction of penicillin G acylase and its mutants].
    Chen JB; Yang S; Wu XJ; Li SY; Yuan ZY
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Nov; 34(6):786-9. PubMed ID: 12417925
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular dynamics simulations of the acyl-enzyme and the tetrahedral intermediate in the deacylation step of serine proteases.
    Topf M; Várnai P; Schofield CJ; Richards WG
    Proteins; 2002 May; 47(3):357-69. PubMed ID: 11948789
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The pH dependency of bovine spleen cathepsin B-catalyzed transfer of N alpha-benzyloxycarbonyl-L-lysine from p-nitrophenol to water and dipeptide nucleophiles. Comparisons with papain.
    Bajkowski AS; Frankfater A
    J Biol Chem; 1983 Feb; 258(3):1650-5. PubMed ID: 6401725
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Roles of aspartic acid-181 and serine-222 in intermediate formation and hydrolysis of the mammalian protein-tyrosine-phosphatase PTP1.
    Lohse DL; Denu JM; Santoro N; Dixon JE
    Biochemistry; 1997 Apr; 36(15):4568-75. PubMed ID: 9109666
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acid-base catalysis in the chemical mechanism of inosine monophosphate dehydrogenase.
    Markham GD; Bock CL; Schalk-Hihi C
    Biochemistry; 1999 Apr; 38(14):4433-40. PubMed ID: 10194364
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Staphylococcus aureus sortase transpeptidase SrtA: insight into the kinetic mechanism and evidence for a reverse protonation catalytic mechanism.
    Frankel BA; Kruger RG; Robinson DE; Kelleher NL; McCafferty DG
    Biochemistry; 2005 Aug; 44(33):11188-200. PubMed ID: 16101303
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microscopic rate-constants for substrate binding and acylation in cold-adaptation of trypsin I from Atlantic cod.
    Asgeirsson B; Cekan P
    FEBS Lett; 2006 Aug; 580(19):4639-44. PubMed ID: 16879823
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evidence for an induced conformational change in the catalytic mechanism of homoisocitrate dehydrogenase for Saccharomyces cerevisiae: Characterization of the D271N mutant enzyme.
    Hsu C; West AH; Cook PF
    Arch Biochem Biophys; 2015 Oct; 584():20-7. PubMed ID: 26325079
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acylation of alpha-chymotrypsin by oxygen and sulfur esters of specific substrates: kinetic evidence for a tetrahedral intermediate.
    Hiroara H; Bender ML; Stark RS
    Proc Natl Acad Sci U S A; 1974 May; 71(5):1643-7. PubMed ID: 4525454
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Steady-state kinetics and isotope effects on the mutant catalytic trimer of aspartate transcarbamoylase containing the replacement of histidine 134 by alanine.
    Waldrop GL; Turnbull JL; Parmentier LE; O'Leary MH; Cleland WW; Schachman HK
    Biochemistry; 1992 Jul; 31(28):6585-91. PubMed ID: 1633170
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme.
    Karsten WE; Liu D; Rao GS; Harris BG; Cook PF
    Biochemistry; 2005 Mar; 44(9):3626-35. PubMed ID: 15736972
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetic studies of rat kidney gamma-glutamyltranspeptidase deacylation reveal a general base-catalyzed mechanism.
    Castonguay R; Lherbet C; Keillor JW
    Biochemistry; 2003 Oct; 42(39):11504-13. PubMed ID: 14516202
    [TBL] [Abstract][Full Text] [Related]  

  • 56. pH dependence and solvent deuterium oxide kinetic isotope effects on Bacillus cereus beta-lactamase I catalyzed reactions.
    Hardy LW; Kirsch JF
    Biochemistry; 1984 Mar; 23(6):1282-7. PubMed ID: 11494985
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of counter ions in trypsin acylation. NaCl effect.
    Vajda T; Náray-Szabó G
    Acta Biochim Biophys Hung; 1988; 23(2):195-202. PubMed ID: 3148252
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Details of the acyl-enzyme intermediate and the oxyanion hole in serine protease catalysis.
    Whiting AK; Peticolas WL
    Biochemistry; 1994 Jan; 33(2):552-61. PubMed ID: 8286385
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic investigation of the staphylococcal protease-catalyzed hydrolysis of synthetic substrates.
    Houmard J
    Eur J Biochem; 1976 Sep; 68(2):621-7. PubMed ID: 10162
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Accumulation of tetrahedral intermediates in cholinesterase catalysis: a secondary isotope effect study.
    Tormos JR; Wiley KL; Wang Y; Fournier D; Masson P; Nachon F; Quinn DM
    J Am Chem Soc; 2010 Dec; 132(50):17751-9. PubMed ID: 21105647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.