These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 32201795)
1. Effect of Textural Properties and Surface Chemical Nature of Silica Nanoparticles from Different Silicon Sources on the Viscosity Reduction of Heavy Crude Oil. Montes D; Henao J; Taborda EA; Gallego J; Cortés FB; Franco CA ACS Omega; 2020 Mar; 5(10):5085-5097. PubMed ID: 32201795 [TBL] [Abstract][Full Text] [Related]
2. Experimental Measurement and Equilibrium Modeling of Adsorption of Asphaltenes from Various Origins onto the Magnetite Surface under Static and Dynamic Conditions. Mohammadi MR; Ansari S; Bahmaninia H; Ostadhassan M; Norouzi-Apourvari S; Hemmati-Sarapardeh A; Schaffie M; Ranjbar M ACS Omega; 2021 Sep; 6(37):24256-24268. PubMed ID: 34568703 [TBL] [Abstract][Full Text] [Related]
3. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification. J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480 [TBL] [Abstract][Full Text] [Related]
4. Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology. Hosseinpour N; Khodadadi AA; Bahramian A; Mortazavi Y Langmuir; 2013 Nov; 29(46):14135-46. PubMed ID: 24131407 [TBL] [Abstract][Full Text] [Related]
5. Influence of the Ce Medina OE; Gallego J; Restrepo LG; Cortés FB; Franco CA Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31085999 [TBL] [Abstract][Full Text] [Related]
6. Development and Evaluation from Laboratory to Field Trial of a Dual-Purpose Fracturing Nanofluid: Inhibition of Associated Formation Damage and Increasing Heavy Crude Oil Mobility. Giraldo MA; Zabala RD; Bahamón JI; Ulloa JM; Usurriaga JM; Cárdenas JC; Mazo C; Guzmán JD; Lopera SH; Franco CA; Cortés FB Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808033 [TBL] [Abstract][Full Text] [Related]
7. [Determination of silanol group content on the surface of fumed silica by chemical reaction-headspace gas chromatography]. Bai Y; Duan X; Wang D; Hu G; Wu C; Zhang M; Liu W Se Pu; 2021 Jul; 39(7):715-720. PubMed ID: 34227369 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, amino-functionalization of mesoporous silica and its adsorption of Cr(VI). Li J; Miao X; Hao Y; Zhao J; Sun X; Wang L J Colloid Interface Sci; 2008 Feb; 318(2):309-14. PubMed ID: 18036539 [TBL] [Abstract][Full Text] [Related]
9. Experimental measurement and modeling of asphaltene adsorption onto iron oxide and lime nanoparticles in the presence and absence of water. Ansari S; Mohammadi MR; Bahmaninia H; Hemmati-Sarapardeh A; Schaffie M; Norouzi-Apourvari S; Ranjbar M Sci Rep; 2023 Jan; 13(1):122. PubMed ID: 36599908 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of D-mannose capped silicon nanoparticles and their interactions with MCF-7 human breast cancerous cells. Ahire JH; Chambrier I; Mueller A; Bao Y; Chao Y ACS Appl Mater Interfaces; 2013 Aug; 5(15):7384-91. PubMed ID: 23815685 [TBL] [Abstract][Full Text] [Related]
11. Size, Stability, and Porosity of Mesoporous Nanoparticles Characterized with Light Scattering. Kaasalainen M; Aseyev V; von Haartman E; Karaman DŞ; Mäkilä E; Tenhu H; Rosenholm J; Salonen J Nanoscale Res Lett; 2017 Dec; 12(1):74. PubMed ID: 28124301 [TBL] [Abstract][Full Text] [Related]
12. Characterization and Applications of Nanoparticles Modified in-Flight with Silica or Silica-Organic Coatings. Post P; Wurlitzer L; Maus-Friedrichs W; Weber AP Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30011892 [TBL] [Abstract][Full Text] [Related]
13. Influence of multi-walled carbon nanotubes on textural and adsorption characteristics of in situ synthesized mesostructured silica. Karim AH; Jalil AA; Triwahyono S; Kamarudin NH; Ripin A J Colloid Interface Sci; 2014 May; 421():93-102. PubMed ID: 24594037 [TBL] [Abstract][Full Text] [Related]
14. Functional Bioinorganic Hybrids from Enzymes and Luminescent Silicon-Based Nanoparticles. Robidillo CJT; Islam MA; Aghajamali M; Faramus A; Sinelnikov R; Zhang X; Boekhoven J; Veinot JGC Langmuir; 2018 Jun; 34(22):6556-6569. PubMed ID: 29758156 [TBL] [Abstract][Full Text] [Related]
16. Adsorption of asphaltenes from heavy oil onto in situ prepared NiO nanoparticles. Abu Tarboush BJ; Husein MM J Colloid Interface Sci; 2012 Jul; 378(1):64-9. PubMed ID: 22560489 [TBL] [Abstract][Full Text] [Related]
17. Asphaltene adsorption on quartz sand in the presence of pre-adsorbed water. Gonzalez V; Taylor SE J Colloid Interface Sci; 2016 Oct; 480():137-145. PubMed ID: 27423129 [TBL] [Abstract][Full Text] [Related]
18. Understanding mechanisms of asphaltene adsorption from organic solvent on mica. Natarajan A; Kuznicki N; Harbottle D; Masliyah J; Zeng H; Xu Z Langmuir; 2014 Aug; 30(31):9370-7. PubMed ID: 24978299 [TBL] [Abstract][Full Text] [Related]
19. The effect of the nanosize on surface properties of NiO nanoparticles for the adsorption of Quinolin-65. Marei NN; Nassar NN; Vitale G Phys Chem Chem Phys; 2016 Mar; 18(9):6839-49. PubMed ID: 26878274 [TBL] [Abstract][Full Text] [Related]
20. A generalized method toward high dispersion of transition metals in large pore mesoporous metal oxide/silica hybrids. Bérubé F; Khadraoui A; Florek J; Kaliaguine S; Kleitz F J Colloid Interface Sci; 2015 Jul; 449():102-14. PubMed ID: 25591825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]