These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32201821)

  • 1. Modeling of Oil/Water Interfacial Dynamics in Three-Dimensional Bistable Electrowetting Display Pixels.
    Yang G; Zhuang L; Bai P; Tang B; Henzen A; Zhou G
    ACS Omega; 2020 Mar; 5(10):5326-5333. PubMed ID: 32201821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oil Conductivity, Electric-Field-Induced Interfacial Charge Effects, and Their Influence on the Electro-Optical Response of Electrowetting Display Devices.
    Jiang C; Tang B; Xu B; Groenewold J; Zhou G
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32698463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photolithography Fabricated Spacer Arrays Offering Mechanical Strengthening and Oil Motion Control in Electrowetting Displays.
    Dou Y; Chen L; Li H; Tang B; Henzen A; Zhou G
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31952285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-phase microfluidics in electrowetting displays and its effect on optical performance.
    He T; Jin M; Eijkel JC; Zhou G; Shui L
    Biomicrofluidics; 2016 Jan; 10(1):011908. PubMed ID: 26909120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting.
    Roques-Carmes T; Gigante A; Commenge JM; Corbel S
    Langmuir; 2009 Nov; 25(21):12771-9. PubMed ID: 19785398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms.
    Lin YY; Welch ER; Fair RB
    Sens Actuators B Chem; 2012 Oct; 173():338-345. PubMed ID: 23559693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multi-Electrode Pixel Structure for Quick-Response Electrowetting Displays.
    Tian L; Lai S; Zhang T; Li W; Tang B; Zhou G
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-phase microfluidic flow modeling in an electrowetting display microwell.
    Xie Y; Sun M; Jin M; Zhou G; Shui L
    Eur Phys J E Soft Matter; 2016 Feb; 39(2):16. PubMed ID: 26920519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Multi-DC Overdriving Waveform of Electrowetting Displays for Gray Scale Consistency.
    Xu Y; Li S; Wang Z; Zhang H; Li Z; Xiao B; Guo W; Liu L; Bai P
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Separated Reset Waveform Design for Suppressing Oil Backflow in Active Matrix Electrowetting Displays.
    Liu L; Bai P; Yi Z; Zhou G
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33925329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable Fabrication and Testing Processes for Three-Layer Multi-Color Segmented Electrowetting Display.
    Yang G; Tang B; Yuan D; Henzen A; Zhou G
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31126076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamics and stability of lubricating oil films during droplet transport by electrowetting in microfluidic devices.
    Kleinert J; Srinivasan V; Rival A; Delattre C; Velev OD; Pamula VK
    Biomicrofluidics; 2015 May; 9(3):034104. PubMed ID: 26045729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First fabrication of electrowetting display by using pigment-in-oil driving pixels.
    Lee PT; Chiu CW; Lee TM; Chang TY; Wu MT; Cheng WY; Kuo SW; Lin JJ
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):5914-20. PubMed ID: 23796039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Driving System for Fast and Precise Gray-Scale Response Based on Amplitude-Frequency Mixed Modulation in TFT Electrowetting Displays.
    Yi Z; Liu L; Wang L; Li W; Shui L; Zhou G
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31671782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aperture Ratio Improvement by Optimizing the Voltage Slope and Reverse Pulse in the Driving Waveform for Electrowetting Displays.
    Yi Z; Feng W; Wang L; Liu L; Lin Y; He W; Shui L; Zhang C; Zhang Z; Zhou G
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31817892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in Advanced Properties of Electrowetting Displays.
    Lu Y; Tang B; Yang G; Guo Y; Liu L; Henzen A
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33670530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optofluid-Based Reflective Displays.
    Jin M; Shen S; Yi Z; Zhou G; Shui L
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, Fabrication and Measurement of Full-Color Reflective Electrowetting Displays.
    Yang G; Wang B; Chang Z; Liu Q; Liu L
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Powered Microfluidic Transport System Based on Triboelectric Nanogenerator and Electrowetting Technique.
    Nie J; Ren Z; Shao J; Deng C; Xu L; Chen X; Li M; Wang ZL
    ACS Nano; 2018 Feb; 12(2):1491-1499. PubMed ID: 29341585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coplanar Electrowetting-Induced Droplet Detachment from Radially Symmetric Electrodes.
    Burkhart CT; Maki KL; Schertzer MJ
    Langmuir; 2020 Jul; 36(28):8129-8136. PubMed ID: 32551661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.