These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32201821)

  • 21. Detaching droplets in immiscible fluids from a solid substrate with the help of electrowetting.
    Hong J; Lee SJ
    Lab Chip; 2015 Feb; 15(3):900-7. PubMed ID: 25500988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-linearity and dynamics of low-voltage electrowetting and dewetting.
    Li YJ; Echtermeyer D; Cahill BP; Pliquett U
    Phys Chem Chem Phys; 2019 Aug; 21(33):18290-18299. PubMed ID: 31396613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication and Actuation of an Electrowetting Droplet Array on a Flexible Substrate.
    Van Grinsven KL; Ousati Ashtiani A; Jiang H
    Micromachines (Basel); 2017 Nov; 8(11):. PubMed ID: 30400522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrowetting-based droplet mixers for microfluidic systems.
    Paik P; Pamula VK; Pollack MG; Fair RB
    Lab Chip; 2003 Feb; 3(1):28-33. PubMed ID: 15100802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of droplet motion under electrowetting actuation.
    Annapragada SR; Dash S; Garimella SV; Murthy JY
    Langmuir; 2011 Jul; 27(13):8198-204. PubMed ID: 21627144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Droplet-on-a-wristband: chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules.
    Fan SK; Yang H; Hsu W
    Lab Chip; 2011 Jan; 11(2):343-7. PubMed ID: 20957291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water-oil core-shell droplets for electrowetting-based digital microfluidic devices.
    Brassard D; Malic L; Normandin F; Tabrizian M; Veres T
    Lab Chip; 2008 Aug; 8(8):1342-9. PubMed ID: 18651077
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward Suppressing Oil Backflow Based on a Combined Driving Waveform for Electrowetting Displays.
    Long Z; Yi Z; Zhang H; Lv J; Liu L; Chi F; Shui L; Zhang C
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Video-speed electronic paper based on electrowetting.
    Hayes RA; Feenstra BJ
    Nature; 2003 Sep; 425(6956):383-5. PubMed ID: 14508484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrowetting without external voltage using paint-on electrodes.
    Eaker CB; Joshipura ID; Maxwell LR; Heikenfeld J; Dickey MD
    Lab Chip; 2017 Mar; 17(6):1069-1075. PubMed ID: 28225124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of electrowetting processes through force measurements.
    Crane NB; Mishra P; Volinsky AA
    Rev Sci Instrum; 2010 Apr; 81(4):043902. PubMed ID: 20441345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform.
    Madison AC; Royal MW; Vigneault F; Chen L; Griffin PB; Horowitz M; Church GM; Fair RB
    ACS Synth Biol; 2017 Sep; 6(9):1701-1709. PubMed ID: 28569062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic Adaptive Display System for Electrowetting Displays Based on Alternating Current and Direct Current.
    Li S; Xu Y; Zhan Z; Du P; Liu L; Li Z; Wang H; Bai P
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of oil on an electrowetting lenticular lens and related optical characteristics.
    Shin D; Kim J; Kim C; Koo GH; Sim JH; Lee J; Won YH
    Appl Opt; 2017 Mar; 56(7):1886-1892. PubMed ID: 28248385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bifurcation properties of nematic liquid crystals exposed to an electric field: switchability, bistability, and multistability.
    Cummings LJ; Cai C; Kondic L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012509. PubMed ID: 23944476
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Droplet manipulation with polarity-dependent low-voltage electrowetting on an open slippery liquid infused porous surface.
    He X; Zhang J; Zhang X; Deng Y
    Soft Matter; 2019 Jul; 15(26):5211-5219. PubMed ID: 31149699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrowetting Using a Microfluidic Kelvin Water Dropper.
    Yazdanshenas E; Tang Q; Zhang X
    Micromachines (Basel); 2018 Feb; 9(3):. PubMed ID: 30424026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lattice-Boltzmann Simulations of Electrowetting Phenomena.
    Ruiz-Gutiérrez É; Ledesma-Aguilar R
    Langmuir; 2019 Apr; 35(14):4849-4859. PubMed ID: 30869524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling of Droplet Impact onto Polarized and Nonpolarized Dielectric Surfaces.
    Yurkiv V; Yarin AL; Mashayek F
    Langmuir; 2018 Aug; 34(34):10169-10180. PubMed ID: 30063834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of Biphasic Formulations for Use in Electrowetting-Based Liquid Lenses with a High Refractive Index Difference.
    Ober MS; Dermody D; Maillard M; Amiot F; Malet G; Burger B; Woelfle-Gupta C; Berge B
    ACS Comb Sci; 2018 Sep; 20(9):554-566. PubMed ID: 30011989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.