These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 32201985)

  • 1. Unprecedented Surface Plasmon Modes in Monoclinic MoO
    Zhu YP; El-Demellawi JK; Yin J; Lopatin S; Lei Y; Liu Z; Miao X; Mohammed OF; Alshareef HN
    Adv Mater; 2020 May; 32(19):e1908392. PubMed ID: 32201985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in ultrahigh-energy resolution EELS: phonons, infrared plasmons and strongly coupled modes.
    Lagos MJ; Bicket IC; Mousavi M SS; Botton GA
    Microscopy (Oxf); 2022 Feb; 71(Supplement_1):i174-i199. PubMed ID: 35275180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoration of plasmonic Mg nanoparticles by partial galvanic replacement.
    Asselin J; Boukouvala C; Wu Y; Hopper ER; Collins SM; Biggins JS; Ringe E
    J Chem Phys; 2019 Dec; 151(24):244708. PubMed ID: 31893891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the excitations of plasmons and surface exciton polaritons in monoclinic gadolinium sesquioxide by electron energy-loss spectroscopy and plasmon spectroscopic imaging.
    Liou SC; Oleshko VP; Kuo WC; Yang TJ; Shu GJ
    RSC Adv; 2022 Mar; 12(17):10345-10354. PubMed ID: 35425011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observing Plasmon Damping Due to Adhesion Layers in Gold Nanostructures Using Electron Energy Loss Spectroscopy.
    Madsen SJ; Esfandyarpour M; Brongersma ML; Sinclair R
    ACS Photonics; 2017 Feb; 4(2):268-274. PubMed ID: 28944259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sculpting the Plasmonic Responses of Nanoparticles by Directed Electron Beam Irradiation.
    Roccapriore KM; Cho SH; Lupini AR; Milliron DJ; Kalinin SV
    Small; 2022 Jan; 18(1):e2105099. PubMed ID: 34761528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of bending on plasmonic modes in nanowires and planar structures.
    Bellido EP; Bicket IC; Botton GA
    Nanophotonics; 2022 Jan; 11(2):305-314. PubMed ID: 36533260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First-Principles Calculation of MoO
    Pavoni E; Modreanu MG; Mohebbi E; Mencarelli D; Stipa P; Laudadio E; Pierantoni L
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Reduction of MoO
    Chen X; de Boer RM; Kosari A; van Gog H; van Huis MA
    J Phys Chem C Nanomater Interfaces; 2023 Nov; 127(43):21387-21398. PubMed ID: 37937158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can Copper Nanostructures Sustain High-Quality Plasmons?
    Mkhitaryan V; March K; Tseng EN; Li X; Scarabelli L; Liz-Marzán LM; Chen SY; Tizei LHG; Stéphan O; Song JM; Kociak M; García de Abajo FJ; Gloter A
    Nano Lett; 2021 Mar; 21(6):2444-2452. PubMed ID: 33651617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic MoO
    Deng L; Zou Y; Jiang J
    Dalton Trans; 2021 Nov; 50(46):17235-17240. PubMed ID: 34784407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy.
    Horák M; Šikola T
    Ultramicroscopy; 2020 Sep; 216():113044. PubMed ID: 32535410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmons in MoS
    Moynihan E; Rost S; O'Connell E; Ramasse Q; Friedrich C; Bangert U
    J Microsc; 2020 Sep; 279(3):256-264. PubMed ID: 32400884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetrical Plasmon Distribution in Hybrid AuAg Hollow/Solid Coded Nanotubes.
    Genç A; Patarroyo J; Sancho-Parramon J; Arenal R; Bastús NG; Puntes V; Arbiol J
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient Electronic Depletion and Lattice Expansion Induced Ultrafast Bandedge Plasmons.
    Zhang X; Wang M; Tang F; Zhang H; Fu Y; Liu D; Song X
    Adv Sci (Weinh); 2020 Jan; 7(2):1902408. PubMed ID: 31993295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep ultra-violet plasmonics: exploiting momentum-resolved electron energy loss spectroscopy to probe germanium.
    Poursoti Z; Sun W; Bharadwaj S; Malac M; Iyer S; Khosravi F; Cui K; Qi L; Nazemifard N; Jagannath R; Rahman R; Jacob Z
    Opt Express; 2022 Apr; 30(8):12630-12638. PubMed ID: 35472896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-Metal-Assisted Deposition and Patterning of Molybdenum Dioxide at Low Temperature.
    Wang Y; Mayyas M; Yang J; Ghasemian MB; Tang J; Mousavi M; Han J; Ahmed M; Baharfar M; Mao G; Yao Y; Esrafilzadeh D; Cortie D; Kalantar-Zadeh K
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):53181-53193. PubMed ID: 34723471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.