These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32201985)

  • 21. Topotactic Growth of Edge-Terminated MoS
    Dahl-Petersen C; Šarić M; Brorson M; Moses PG; Rossmeisl J; Lauritsen JV; Helveg S
    ACS Nano; 2018 Jun; 12(6):5351-5358. PubMed ID: 29767949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High Spatial Resolution Mapping of Localized Surface Plasmon Resonances in Single Gallium Nanoparticles.
    de la Mata M; Catalán-Gómez S; Nucciarelli F; Pau JL; Molina SI
    Small; 2019 Oct; 15(43):e1902920. PubMed ID: 31496053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic plasmon formation and propagation in artificial aromatic molecules.
    Liu N; Mukherjee S; Bao K; Brown LV; Dorfmüller J; Nordlander P; Halas NJ
    Nano Lett; 2012 Jan; 12(1):364-9. PubMed ID: 22122612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of the excitations of plasmons and surface exciton polaritons in monoclinic gadolinium sesquioxide by electron energy-loss spectroscopy and plasmon spectroscopic imaging.
    Liou SC; Oleshko VP; Kuo WC; Yang TJ; Shu GJ
    RSC Adv; 2022 Mar; 12(17):10345-10354. PubMed ID: 35425011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures.
    Koh AL; Fernández-Domínguez AI; McComb DW; Maier SA; Yang JK
    Nano Lett; 2011 Mar; 11(3):1323-30. PubMed ID: 21344928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Local optical responses of plasmon resonances visualised by near-field optical imaging.
    Okamoto H; Narushima T; Nishiyama Y; Imura K
    Phys Chem Chem Phys; 2015 Mar; 17(9):6192-206. PubMed ID: 25660963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells.
    Wang Q; Tang C; Chen J; Zhan P; Wang Z
    Opt Express; 2011 Nov; 19(24):23889-900. PubMed ID: 22109413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging Energy Transfer in Pt-Decorated Au Nanoprisms via Electron Energy-Loss Spectroscopy.
    Griffin S; Montoni NP; Li G; Straney PJ; Millstone JE; Masiello DJ; Camden JP
    J Phys Chem Lett; 2016 Oct; 7(19):3825-3832. PubMed ID: 27617864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MoO2/multiwalled carbon nanotubes (MWCNT) hybrid for use as a Li-ion battery anode.
    Bhaskar A; Deepa M; Narasinga Rao T
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2555-66. PubMed ID: 23480480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of suspended metal-dielectric-metal plasmonic nanostructures.
    Dong Z; Bosman M; Zhu D; Goh XM; Yang JK
    Nanotechnology; 2014 Apr; 25(13):135303. PubMed ID: 24598115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polarization-sensitive linear plasmonic nanostructures via colloidal lithography with uniaxial colloidal arrays.
    Saracut V; Giloan M; Gabor M; Astilean S; Farcau C
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1362-9. PubMed ID: 23339469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface-Enhanced Molecular Electron Energy Loss Spectroscopy.
    Konečná A; Neuman T; Aizpurua J; Hillenbrand R
    ACS Nano; 2018 May; 12(5):4775-4786. PubMed ID: 29641179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Band modulation and in-plane propagation of surface plasmons in composite nanostructures.
    Xu DH; Zhang K; Shao MR; Wu HW; Fan RH; Peng RW; Wang M
    Opt Express; 2014 Oct; 22(21):25700-9. PubMed ID: 25401603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.
    Long R; Li Y; Song L; Xiong Y
    Small; 2015 Aug; 11(32):3873-89. PubMed ID: 26097101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots.
    Harutyunyan H; Martinson AB; Rosenmann D; Khorashad LK; Besteiro LV; Govorov AO; Wiederrecht GP
    Nat Nanotechnol; 2015 Sep; 10(9):770-4. PubMed ID: 26237345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers.
    Alber I; Sigle W; Müller S; Neumann R; Picht O; Rauber M; van Aken PA; Toimil-Molares ME
    ACS Nano; 2011 Dec; 5(12):9845-53. PubMed ID: 22077953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of hot electrons in nanostructures incorporating conventional and unconventional plasmonic materials.
    Liu T; Besteiro LV; Wang Z; Govorov AO
    Faraday Discuss; 2019 May; 214():199-213. PubMed ID: 30830140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.