These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32202027)

  • 1. Spectral graph theory of brain oscillations.
    Raj A; Cai C; Xie X; Palacios E; Owen J; Mukherjee P; Nagarajan S
    Hum Brain Mapp; 2020 Aug; 41(11):2980-2998. PubMed ID: 32202027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral graph theory of brain oscillations--Revisited and improved.
    Verma P; Nagarajan S; Raj A
    Neuroimage; 2022 Apr; 249():118919. PubMed ID: 35051584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graph neural fields: A framework for spatiotemporal dynamical models on the human connectome.
    Aqil M; Atasoy S; Kringelbach ML; Hindriks R
    PLoS Comput Biol; 2021 Jan; 17(1):e1008310. PubMed ID: 33507899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of transient spectral 'bursts' in functional connectivity: A magnetoencephalography study.
    Seedat ZA; Quinn AJ; Vidaurre D; Liuzzi L; Gascoyne LE; Hunt BAE; O'Neill GC; Pakenham DO; Mullinger KJ; Morris PG; Woolrich MW; Brookes MJ
    Neuroimage; 2020 Apr; 209():116537. PubMed ID: 31935517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The developing relations between networks of cortical myelin and neurophysiological connectivity.
    Vandewouw MM; Hunt BAE; Ziolkowski J; Taylor MJ
    Neuroimage; 2021 Aug; 237():118142. PubMed ID: 33951516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability and dynamics of a spectral graph model of brain oscillations.
    Verma P; Nagarajan S; Raj A
    Netw Neurosci; 2023; 7(1):48-72. PubMed ID: 37334000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What graph theory actually tells us about resting state interictal MEG epileptic activity.
    Niso G; Carrasco S; Gudín M; Maestú F; Del-Pozo F; Pereda E
    Neuroimage Clin; 2015; 8():503-15. PubMed ID: 26106575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateralization of epilepsy using intra-hemispheric brain networks based on resting-state MEG data.
    Pourmotabbed H; Wheless JW; Babajani-Feremi A
    Hum Brain Mapp; 2020 Aug; 41(11):2964-2979. PubMed ID: 32400923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal modes of hub synchronization at rest.
    de Pasquale F; Spadone S; Betti V; Corbetta M; Della Penna S
    Neuroimage; 2021 Jul; 235():118005. PubMed ID: 33819608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. System-level matching of structural and functional connectomes in the human brain.
    Osmanlıoğlu Y; Tunç B; Parker D; Elliott MA; Baum GL; Ciric R; Satterthwaite TD; Gur RE; Gur RC; Verma R
    Neuroimage; 2019 Oct; 199():93-104. PubMed ID: 31141738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disclosing large-scale directed functional connections in MEG with the multivariate phase slope index.
    Basti A; Pizzella V; Chella F; Romani GL; Nolte G; Marzetti L
    Neuroimage; 2018 Jul; 175():161-175. PubMed ID: 29524622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connectome spectral analysis to track EEG task dynamics on a subsecond scale.
    Glomb K; Rué Queralt J; Pascucci D; Defferrard M; Tourbier S; Carboni M; Rubega M; Vulliémoz S; Plomp G; Hagmann P
    Neuroimage; 2020 Nov; 221():117137. PubMed ID: 32652217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global resting-state functional connectivity of neural oscillations in tinnitus with and without hearing loss.
    Demopoulos C; Duong X; Hinkley LB; Ranasinghe KG; Mizuiri D; Garrett C; Honma S; Henderson-Sabes J; Findlay A; Racine-Belkoura C; Cheung SW; Nagarajan SS
    Hum Brain Mapp; 2020 Jul; 41(10):2846-2861. PubMed ID: 32243040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-dependent functional connectivity in resting state networks.
    Samogin J; Marino M; Porcaro C; Wenderoth N; Dupont P; Swinnen SP; Mantini D
    Hum Brain Mapp; 2020 Dec; 41(18):5187-5198. PubMed ID: 32840936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring MEG brain fingerprints: Evaluation, pitfalls, and interpretations.
    Sareen E; Zahar S; Ville DV; Gupta A; Griffa A; Amico E
    Neuroimage; 2021 Oct; 240():118331. PubMed ID: 34237444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dyconnmap: Dynamic connectome mapping-A neuroimaging python module.
    Marimpis AD; Dimitriadis SI; Goebel R
    Hum Brain Mapp; 2021 Oct; 42(15):4909-4939. PubMed ID: 34250674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scale-Dependent Variability and Quantitative Regimes in Graph-Theoretic Representations of Human Cortical Networks.
    Irimia A; Van Horn JD
    Brain Connect; 2016 Mar; 6(2):152-63. PubMed ID: 26596775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergence of canonical functional networks from the structural connectome.
    Xie X; Cai C; Damasceno PF; Nagarajan SS; Raj A
    Neuroimage; 2021 Aug; 237():118190. PubMed ID: 34022382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity.
    Wirsich J; Ridley B; Besson P; Jirsa V; Bénar C; Ranjeva JP; Guye M
    Neuroimage; 2017 Nov; 161():251-260. PubMed ID: 28842386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.