These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32202059)

  • 1. Inverse modeling of laboratory experiment to assess parameter transferability of pesticide environmental fate into outdoor experiments under paddy test systems.
    Kondo K; Wakasone Y; Iijima K; Ohyama K
    Pest Manag Sci; 2020 Aug; 76(8):2768-2780. PubMed ID: 32202059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models.
    Karpouzas DG; Cervelli S; Watanabe H; Capri E; Ferrero A
    Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse analysis to estimate site-specific parameters of a mathematical model for simulating pesticide dissipations in paddy test systems.
    Kondo K; Wakasone Y; Iijima K; Ohyama K
    Pest Manag Sci; 2019 Jun; 75(6):1594-1605. PubMed ID: 30471196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PCPF-M model for simulating the fate and transport of pesticides and their metabolites in rice paddy field.
    Boulange J; Malhat F; Thuyet DQ; Watanabe H
    Pest Manag Sci; 2017 Dec; 73(12):2429-2438. PubMed ID: 28580617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of mathematical modeling and its inverse analysis for precise assessment of pesticide dissipation in a paddy environment.
    Kondo K
    J Pestic Sci; 2022 Aug; 47(3):146-153. PubMed ID: 36479452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting rice pesticide fate and transport following foliage application by an updated PCPF-1 model.
    Tu LH; Boulange J; Phong TK; Thuyet DQ; Watanabe H; Takagi K
    J Environ Manage; 2021 Jan; 277():111356. PubMed ID: 32950777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement and application of the PCPF-1@SWAT2012 model for predicting pesticide transport: a case study of the Sakura River watershed.
    Tu LH; Boulange J; Iwafune T; Yadav IC; Watanabe H
    Pest Manag Sci; 2018 Nov; 74(11):2520-2529. PubMed ID: 29656603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the RICEWQ-VADOFT model for simulating the environmental fate of pretilachlor in rice paddies.
    Karpouzas DG; Ferrero A; Vidotto F; Capri E
    Environ Toxicol Chem; 2005 Apr; 24(4):1007-17. PubMed ID: 15839578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating the fate and transport of nursery-box-applied pesticide in rice paddy fields.
    Boulange J; Thuyet DQ; Jaikaew P; Watanabe H
    Pest Manag Sci; 2016 Jun; 72(6):1178-86. PubMed ID: 26271744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of mefenacet concentrations in paddy fields by an improved PCPF-1 model.
    Watanabe H; Takagi K; Vu SH
    Pest Manag Sci; 2006 Jan; 62(1):20-9. PubMed ID: 16261540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory and field dissipation of penoxsulam, tricyclazole and profoxydim in rice paddy systems.
    Tsochatzis ED; Tzimou-Tsitouridou R; Menkissoglu-Spiroudi U; Karpouzas DG; Katsantonis D
    Chemosphere; 2013 May; 91(7):1049-57. PubMed ID: 23507498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating concentration of bensulphuron-methyl in a drainage canal of a paddy block using a rice pesticide model.
    Phong TK; Hiramatsu K; Watanabe H
    Environ Technol; 2011 Jan; 32(1-2):69-81. PubMed ID: 21473270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling complexity in simulating pesticide fate in a rice paddy.
    Luo Y; Spurlock F; Gill S; Goh KS
    Water Res; 2012 Dec; 46(19):6300-8. PubMed ID: 23021519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil column leaching of pesticides.
    Katagi T
    Rev Environ Contam Toxicol; 2013; 221():1-105. PubMed ID: 23090630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating pesticide leaching and runoff in rice paddies with the RICEWQ-VADOFT model.
    Miao Z; Cheplick MJ; Williams MW; Trevisan M; Padovani L; Gennari M; Ferrero A; Vidotto F; Capri E
    J Environ Qual; 2003; 32(6):2189-99. PubMed ID: 14674541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse modelling for estimating sorption and degradation parameters for pesticides.
    Dubus IG; Beulke S; Brown CD; Gottesbüren B; Dieses A
    Pest Manag Sci; 2004 Sep; 60(9):859-74. PubMed ID: 15382500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of three pesticide fate models with respect to the leaching of two herbicides under field conditions in an irrigated maize cropping system.
    Marín-Benito JM; Pot V; Alletto L; Mamy L; Bedos C; Barriuso E; Benoit P
    Sci Total Environ; 2014 Nov; 499():533-45. PubMed ID: 25130625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field leaching study - Inverse estimation of degradation and sorption parameters for a mobile soil metabolite and its pesticide parent.
    Sur R; Kley C; Sittig S
    Environ Pollut; 2022 Oct; 310():119794. PubMed ID: 35863712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavior of pesticides in water-sediment systems.
    Katagi T
    Rev Environ Contam Toxicol; 2006; 187():133-251. PubMed ID: 16802581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of pesticide runoff from paddy fields to rural rivers.
    Numabe A; Nagahora S
    Water Sci Technol; 2006; 53(2):139-46. PubMed ID: 16594332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.