BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32202117)

  • 1. Interfacial Instability of Emulsion Droplets Containing a Polymer and a Fatty Alcohol.
    Liu S; Li X; Hu L; Deng S; Zhang W; Liu P; Zhang Y
    Langmuir; 2020 Apr; 36(14):3821-3825. PubMed ID: 32202117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial tension of evaporating emulsion droplets containing amphiphilic block copolymers: effects of solvent and polymer composition.
    Zhu J; Hayward RC
    J Colloid Interface Sci; 2012 Jan; 365(1):275-9. PubMed ID: 21981970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particles with Tunable Porosity and Morphology by Controlling Interfacial Instability in Block Copolymer Emulsions.
    Ku KH; Shin JM; Klinger D; Jang SG; Hayward RC; Hawker CJ; Kim BJ
    ACS Nano; 2016 May; 10(5):5243-51. PubMed ID: 27138967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Hydrophobic Interactions between Polymer Surfaces and Air Bubbles or Oil Droplets: Effects of Molecular Weight and Surfactants.
    Yang D; Xie L; Mao X; Gong L; Peng X; Peng Q; Wang T; Liu Q; Zeng H; Zhang H
    Langmuir; 2022 May; 38(17):5257-5268. PubMed ID: 34787428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amphiphilic polysaccharides: useful tools for the preparation of nanoparticles with controlled surface characteristics.
    Durand A; Marie E; Rotureau E; Leonard M; Dellacherie E
    Langmuir; 2004 Aug; 20(16):6956-63. PubMed ID: 15274610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size dependent droplet interfacial tension and surfactant transport in liquid-liquid systems, with applications in shipboard oily bilgewater emulsions.
    Chen Y; Dutcher CS
    Soft Matter; 2020 Mar; 16(12):2994-3004. PubMed ID: 32125335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method to quantify the amount of surfactant at the oil/water interface and to determine total interfacial area of emulsions.
    James-Smith MA; Alford K; Shah DO
    J Colloid Interface Sci; 2007 Jun; 310(2):590-8. PubMed ID: 17321537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interfacial structure of nano- and micron-sized oil and water droplets stabilized with SDS and Span80.
    Zdrali E; Etienne G; Smolentsev N; Amstad E; Roke S
    J Chem Phys; 2019 May; 150(20):204704. PubMed ID: 31153210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conventional surfactant becomes CO2-responsive in the presence of switchable water additives.
    Su X; Robert T; Mercer SM; Humphries C; Cunningham MF; Jessop PG
    Chemistry; 2013 Apr; 19(18):5595-601. PubMed ID: 23463681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oil core-polymer shell microcapsules prepared by internal phase separation from emulsion droplets. I. Characterization and release rates for microcapsules with polystyrene shells.
    Dowding PJ; Atkin R; Vincent B; Bouillot P
    Langmuir; 2004 Dec; 20(26):11374-9. PubMed ID: 15595759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of "snowmanlike" polystyrene/poly(methyl methacrylate)/toluene droplets dispersed in an aqueous solution of a nonionic surfactant at thermodynamic equilibrium.
    Saito N; Nakatsuru R; Kagari Y; Okubo M
    Langmuir; 2007 Nov; 23(23):11506-12. PubMed ID: 17929841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Encapsulation of pristine fullerene C60 within block copolymer micelles through interfacial instabilities of emulsion droplets.
    Li W; Zhu X; Wang J; Liang R; Li J; Liu S; Tu G; Zhu J
    J Colloid Interface Sci; 2014 Mar; 418():81-6. PubMed ID: 24461821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double phase inversion of emulsions containing layered double hydroxide particles induced by adsorption of sodium dodecyl sulfate.
    Wang J; Yang F; Li C; Liu S; Sun D
    Langmuir; 2008 Sep; 24(18):10054-61. PubMed ID: 18698856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for the preparation of submicron particles of sparingly water-soluble drugs by precipitation in oil-in-water emulsions. I: Influence of emulsification and surfactant concentration.
    Sjöström B; Kronberg B; Carlfors J
    J Pharm Sci; 1993 Jun; 82(6):579-83. PubMed ID: 8331529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of surface charges of oil droplets and carbonate rocks to improve oil recovery.
    Hou J; Han M; Wang J
    Sci Rep; 2021 Jul; 11(1):14518. PubMed ID: 34267283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheological Characterization of Mixed Surfactant Films at Droplet Interfaces via Micropipette Aspiration.
    Micklavzina BL; Luferov K; Longo ML
    Langmuir; 2018 Jul; 34(29):8560-8570. PubMed ID: 29950095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanosheet Particles with Defect-Free Block Copolymer Structures Driven by Emulsions Containing Crystallizable Surfactants.
    Tan Z; Lee J; Kim J; Ku KH; Kim BJ
    Small; 2024 Feb; 20(5):e2304746. PubMed ID: 37726236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic and Kinetic Pathways to Agitated and Spontaneous Emulsification.
    Kullappan M; Chaudhury MK
    Langmuir; 2020 Sep; 36(34):10218-10237. PubMed ID: 32787033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of interfacial characteristics on Ostwald ripening in hydrocarbon oil-in-water emulsions.
    Mun S; McClements DJ
    Langmuir; 2006 Feb; 22(4):1551-4. PubMed ID: 16460073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.