These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 32202292)
61. Magneto-optical control of light collapse in bulk Kerr media. Linzon Y; Rutkowska KA; Malomed BA; Morandotti R Phys Rev Lett; 2009 Jul; 103(5):053902. PubMed ID: 19792500 [TBL] [Abstract][Full Text] [Related]
62. Enhanced magnetic modulation of light polarization exploiting hybridization with multipolar dark plasmons in magnetoplasmonic nanocavities. López-Ortega A; Zapata-Herrera M; Maccaferri N; Pancaldi M; Garcia M; Chuvilin A; Vavassori P Light Sci Appl; 2020; 9():49. PubMed ID: 32257180 [TBL] [Abstract][Full Text] [Related]
64. Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO₄ photoanodes decorated with Ag@SiO₂ core-shell nanoparticles. Abdi FF; Dabirian A; Dam B; van de Krol R Phys Chem Chem Phys; 2014 Aug; 16(29):15272-7. PubMed ID: 24942363 [TBL] [Abstract][Full Text] [Related]
65. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207 [TBL] [Abstract][Full Text] [Related]
66. Optical and magneto-optical properties of gold core cobalt shell magnetoplasmonic nanowire arrays. Toal B; McMillen M; Murphy A; Hendren W; Arredondo M; Pollard R Nanoscale; 2014 Nov; 6(21):12905-11. PubMed ID: 25230928 [TBL] [Abstract][Full Text] [Related]
67. An ultra-flexible plasmonic metamaterial film for efficient omnidirectional and broadband optical absorption. Zhang H; Feng L; Liang Y; Xu T Nanoscale; 2019 Jan; 11(2):437-443. PubMed ID: 30350835 [TBL] [Abstract][Full Text] [Related]
68. Laser-Induced Forward Transfer-printing of focused ion beam pre-machined crystalline magneto-optic yttrium iron garnet micro-discs. Sones CL; Feinaeugle M; Sposito A; Gholipour B; Eason RW Opt Express; 2012 Jul; 20(14):15171-9. PubMed ID: 22772215 [TBL] [Abstract][Full Text] [Related]
69. Observation of a cubical-like microstructure of strontium iron garnet and yttrium iron garnet prepared via sol-gel technique. Nasir N; Yahya N; Kashif M; Daud H; Akhtar MN; Zaid HM; Shafie A; Teng LC J Nanosci Nanotechnol; 2011 Mar; 11(3):2551-4. PubMed ID: 21449424 [TBL] [Abstract][Full Text] [Related]
70. All-Optical Manipulation of Magnetization in Ferromagnetic Thin Films Enhanced by Plasmonic Resonances. Cheng F; Wang C; Su Z; Wang X; Cai Z; Sun NX; Liu Y Nano Lett; 2020 Sep; 20(9):6437-6443. PubMed ID: 32787165 [TBL] [Abstract][Full Text] [Related]
71. Silicon-Based All-Dielectric Metasurface on an Iron Garnet Film for Efficient Magneto-Optical Light Modulation in Near IR Range. Krichevsky DM; Xia S; Mandrik MP; Ignatyeva DO; Bi L; Belotelov VI Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835690 [TBL] [Abstract][Full Text] [Related]
72. Magnetic and magneto-optical properties of bismuth-substituted lutetium iron garnet films. Hansen P; Klages C; Schuldt J; Witter K Phys Rev B Condens Matter; 1985 May; 31(9):5858-5864. PubMed ID: 9936580 [No Abstract] [Full Text] [Related]
74. Nanoporous Gold Nanoparticles and Au/Al Rao W; Wang D; Kups T; Baradács E; Parditka B; Erdélyi Z; Schaaf P ACS Appl Mater Interfaces; 2017 Feb; 9(7):6273-6281. PubMed ID: 28145115 [TBL] [Abstract][Full Text] [Related]
75. Magneto-optical binding in the near field. Edelstein S; García-Martín A; Serena PA; Marqués MI Sci Rep; 2021 Oct; 11(1):20820. PubMed ID: 34675237 [TBL] [Abstract][Full Text] [Related]
76. Transverse magneto-optical Kerr effect in active magneto-plasmonic structures. Borovkova O; Kalish A; Belotelov V Opt Lett; 2016 Oct; 41(19):4593-4596. PubMed ID: 27749889 [TBL] [Abstract][Full Text] [Related]
77. Optoelectronic phenomena in gold metal nanostructures due to the inverse Faraday effect. Nadarajah A; Sheldon MT Opt Express; 2017 May; 25(11):12753-12764. PubMed ID: 28786629 [TBL] [Abstract][Full Text] [Related]
78. Switching the Optical Chirality in Magnetoplasmonic Metasurfaces Using Applied Magnetic Fields. Qin J; Deng L; Kang T; Nie L; Feng H; Wang H; Yang R; Liang X; Tang T; Shen J; Li C; Wang H; Luo Y; Armelles G; Bi L ACS Nano; 2020 Mar; 14(3):2808-2816. PubMed ID: 32074454 [TBL] [Abstract][Full Text] [Related]
79. Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens. Fan F; Chen S; Wang XH; Chang SJ Opt Express; 2013 Apr; 21(7):8614-21. PubMed ID: 23571951 [TBL] [Abstract][Full Text] [Related]
80. High-temperature stable plasmonic and cavity resonances in metal nanoparticle-decorated silicon nanopillars for strong broadband absorption in photothermal applications. Hou G; Wang Z; Ma H; Ji Y; Yu L; Xu J; Chen K Nanoscale; 2019 Aug; 11(31):14777-14784. PubMed ID: 31353390 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]