These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 32202503)
1. Learning Latent Space Representations to Predict Patient Outcomes: Model Development and Validation. Rongali S; Rose AJ; McManus DD; Bajracharya AS; Kapoor A; Granillo E; Yu H J Med Internet Res; 2020 Mar; 22(3):e16374. PubMed ID: 32202503 [TBL] [Abstract][Full Text] [Related]
2. A comprehensive evaluation for the prediction of mortality in intensive care units with LSTM networks: patients with cardiovascular disease. Maheshwari S; Agarwal A; Shukla A; Tiwari R Biomed Tech (Berl); 2020 Aug; 65(4):435-446. PubMed ID: 31846424 [TBL] [Abstract][Full Text] [Related]
3. Predicting post-stroke pneumonia using deep neural network approaches. Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312 [TBL] [Abstract][Full Text] [Related]
4. Dynamic ElecTronic hEalth reCord deTection (DETECT) of individuals at risk of a first episode of psychosis: a case-control development and validation study. Raket LL; Jaskolowski J; Kinon BJ; Brasen JC; Jönsson L; Wehnert A; Fusar-Poli P Lancet Digit Health; 2020 May; 2(5):e229-e239. PubMed ID: 33328055 [TBL] [Abstract][Full Text] [Related]
5. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning]. Lin Y; Wu JY; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862 [TBL] [Abstract][Full Text] [Related]
6. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078 [TBL] [Abstract][Full Text] [Related]
7. A statistically rigorous deep neural network approach to predict mortality in trauma patients admitted to the intensive care unit. Ahmed FS; Ali L; Joseph BA; Ikram A; Ul Mustafa R; Bukhari SAC J Trauma Acute Care Surg; 2020 Oct; 89(4):736-742. PubMed ID: 32773672 [TBL] [Abstract][Full Text] [Related]
8. Representation of time-varying and time-invariant EMR data and its application in modeling outcome prediction for heart failure patients. Huang Y; Wang M; Zheng Z; Ma M; Fei X; Wei L; Chen H J Biomed Inform; 2023 Jul; 143():104427. PubMed ID: 37339714 [TBL] [Abstract][Full Text] [Related]
9. Automated feature selection of predictors in electronic medical records data. Gronsbell J; Minnier J; Yu S; Liao K; Cai T Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541 [TBL] [Abstract][Full Text] [Related]
10. Machine Learning Applied to Clinical Laboratory Data in Spain for COVID-19 Outcome Prediction: Model Development and Validation. Domínguez-Olmedo JL; Gragera-Martínez Á; Mata J; Pachón Álvarez V J Med Internet Res; 2021 Apr; 23(4):e26211. PubMed ID: 33793407 [TBL] [Abstract][Full Text] [Related]
11. Machine Learning Model for Risk Prediction of Community-Acquired Acute Kidney Injury Hospitalization From Electronic Health Records: Development and Validation Study. Hsu CN; Liu CL; Tain YL; Kuo CY; Lin YC J Med Internet Res; 2020 Aug; 22(8):e16903. PubMed ID: 32749223 [TBL] [Abstract][Full Text] [Related]
12. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone. Kim H; Lee S; Lee S; Hong S; Kang H; Kim N JMIR Mhealth Uhealth; 2019 Oct; 7(10):e14149. PubMed ID: 31621642 [TBL] [Abstract][Full Text] [Related]
13. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models. Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153 [TBL] [Abstract][Full Text] [Related]
14. Sequential autoencoders for feature engineering and pretraining in major depressive disorder risk prediction. Jones BW; Taylor WD; Walsh CG JAMIA Open; 2023 Dec; 6(4):ooad086. PubMed ID: 37818308 [TBL] [Abstract][Full Text] [Related]
15. Early Detection of Septic Shock Onset Using Interpretable Machine Learners. Misra D; Avula V; Wolk DM; Farag HA; Li J; Mehta YB; Sandhu R; Karunakaran B; Kethireddy S; Zand R; Abedi V J Clin Med; 2021 Jan; 10(2):. PubMed ID: 33467539 [TBL] [Abstract][Full Text] [Related]
16. Tensor learning of pointwise mutual information from EHR data for early prediction of sepsis. Nesaragi N; Patidar S; Aggarwal V Comput Biol Med; 2021 Jul; 134():104430. PubMed ID: 33991856 [TBL] [Abstract][Full Text] [Related]
17. Personal Health Information Inference Using Machine Learning on RNA Expression Data from Patients With Cancer: Algorithm Validation Study. Kweon S; Lee JH; Lee Y; Park YR J Med Internet Res; 2020 Aug; 22(8):e18387. PubMed ID: 32773372 [TBL] [Abstract][Full Text] [Related]
18. Improved ICU mortality prediction based on SOFA scores and gastrointestinal parameters. Aperstein Y; Cohen L; Bendavid I; Cohen J; Grozovsky E; Rotem T; Singer P PLoS One; 2019; 14(9):e0222599. PubMed ID: 31568512 [TBL] [Abstract][Full Text] [Related]
19. Early Prediction of Sepsis in EMR Records Using Traditional ML Techniques and Deep Learning LSTM Networks. Saqib M; Sha Y; Wang MD Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4038-4041. PubMed ID: 30441243 [TBL] [Abstract][Full Text] [Related]
20. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]