These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 32202657)
1. Geographic variation in the genetic basis of resistance to leaf rust between locally adapted ecotypes of the biofuel crop switchgrass (Panicum virgatum). VanWallendael A; Bonnette J; Juenger TE; Fritschi FB; Fay PA; Mitchell RB; Lloyd-Reilley J; Rouquette FM; Bergstrom GC; Lowry DB New Phytol; 2020 Sep; 227(6):1696-1708. PubMed ID: 32202657 [TBL] [Abstract][Full Text] [Related]
2. The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass ( Milano ER; Lowry DB; Juenger TE G3 (Bethesda); 2016 Nov; 6(11):3561-3570. PubMed ID: 27613751 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in Sichuan wheat. Ye X; Li J; Cheng Y; Yao F; Long L; Yu C; Wang Y; Wu Y; Li J; Wang J; Jiang Q; Li W; Ma J; Wei Y; Zheng Y; Chen G BMC Plant Biol; 2019 Apr; 19(1):147. PubMed ID: 30991940 [TBL] [Abstract][Full Text] [Related]
4. Adaptations between ecotypes and along environmental gradients in Panicum virgatum. Lowry DB; Behrman KD; Grabowski P; Morris GP; Kiniry JR; Juenger TE Am Nat; 2014 May; 183(5):682-92. PubMed ID: 24739200 [TBL] [Abstract][Full Text] [Related]
5. Dynamic Reconfiguration of Switchgrass Proteomes in Response to Rust ( Palmer NA; Alvarez S; Naldrett MJ; Muhle A; Sarath G; Edmé SJ; Tatineni S; Mitchell RB; Yuen G Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834079 [TBL] [Abstract][Full Text] [Related]
6. Switchgrass (Panicum virgatum L.) Genotypes Differ between Coastal Sites and Inland Road Corridors in the Northeastern US. Ecker G; Zalapa J; Auer C PLoS One; 2015; 10(6):e0130414. PubMed ID: 26125564 [TBL] [Abstract][Full Text] [Related]
7. Foliar fungal endophyte communities are structured by environment but not host ecotype in Panicum virgatum (switchgrass). Whitaker BK; Reynolds HL; Clay K Ecology; 2018 Dec; 99(12):2703-2711. PubMed ID: 30367461 [TBL] [Abstract][Full Text] [Related]
8. QTL × environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. Lowry DB; Lovell JT; Zhang L; Bonnette J; Fay PA; Mitchell RB; Lloyd-Reilley J; Boe AR; Wu Y; Rouquette FM; Wynia RL; Weng X; Behrman KD; Healey A; Barry K; Lipzen A; Bauer D; Sharma A; Jenkins J; Schmutz J; Fritschi FB; Juenger TE Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12933-12941. PubMed ID: 31182579 [TBL] [Abstract][Full Text] [Related]
9. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM). Vatter T; Maurer A; Perovic D; Kopahnke D; Pillen K; Ordon F PLoS One; 2018; 13(1):e0191666. PubMed ID: 29370232 [TBL] [Abstract][Full Text] [Related]
10. Quantitative trait locus mapping combined with variant and transcriptome analyses identifies a cluster of gene candidates underlying the variation in leaf wax between upland and lowland switchgrass ecotypes. Qi P; Pendergast TH; Johnson A; Bahri BA; Choi S; Missaoui A; Devos KM Theor Appl Genet; 2021 Jul; 134(7):1957-1975. PubMed ID: 33760937 [TBL] [Abstract][Full Text] [Related]
11. A QTL with major effect on reducing leaf rust severity on the short arm of chromosome 1A of wheat detected across different genetic backgrounds and diverse environments. Du Z; Che M; Li G; Chen J; Quan W; Guo Y; Wang Z; Ren J; Zhang H; Zhang Z Theor Appl Genet; 2015 Aug; 128(8):1579-94. PubMed ID: 25982130 [TBL] [Abstract][Full Text] [Related]
12. Natural variation in genes potentially involved in plant architecture and adaptation in switchgrass (Panicum virgatum L.). Bahri BA; Daverdin G; Xu X; Cheng JF; Barry KW; Brummer EC; Devos KM BMC Evol Biol; 2018 Jun; 18(1):91. PubMed ID: 29898656 [TBL] [Abstract][Full Text] [Related]
13. Multi-environment multi-QTL association mapping identifies disease resistance QTL in barley germplasm from Latin America. Gutiérrez L; Germán S; Pereyra S; Hayes PM; Pérez CA; Capettini F; Locatelli A; Berberian NM; Falconi EE; Estrada R; Fros D; Gonza V; Altamirano H; Huerta-Espino J; Neyra E; Orjeda G; Sandoval-Islas S; Singh R; Turkington K; Castro AJ Theor Appl Genet; 2015 Mar; 128(3):501-16. PubMed ID: 25548806 [TBL] [Abstract][Full Text] [Related]
14. Characterizing the Genetic Architecture of Nonhost Resistance in Barley Using Pathogenically Diverse Haghdoust R; Singh D; Park RF; Dracatos PM Phytopathology; 2021 Apr; 111(4):684-694. PubMed ID: 32931394 [TBL] [Abstract][Full Text] [Related]
15. Quantitative Trait Loci Conferring Leaf Rust Resistance in Hexaploid Wheat. Pinto da Silva GB; Zanella CM; Martinelli JA; Chaves MS; Hiebert CW; McCallum BD; Boyd LA Phytopathology; 2018 Dec; 108(12):1344-1354. PubMed ID: 30211634 [TBL] [Abstract][Full Text] [Related]
16. Rust fungi on Panicum. Demers JE; Liu M; Hambleton S; Castlebury LA Mycologia; 2017; 109(1):1-17. PubMed ID: 28402789 [TBL] [Abstract][Full Text] [Related]
17. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.). Peng FY; Yang RC BMC Plant Biol; 2017 Jun; 17(1):108. PubMed ID: 28633642 [TBL] [Abstract][Full Text] [Related]