BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 32202671)

  • 1. Moving beyond belief: A narrative review of potential biomarkers for transcutaneous vagus nerve stimulation.
    Burger AM; D'Agostini M; Verkuil B; Van Diest I
    Psychophysiology; 2020 Jun; 57(6):e13571. PubMed ID: 32202671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential.
    Warren CM; Tona KD; Ouwerkerk L; van Paridon J; Poletiek F; van Steenbergen H; Bosch JA; Nieuwenhuis S
    Brain Stimul; 2019; 12(3):635-642. PubMed ID: 30591360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcutaneous Vagus Nerve Stimulation in Humans Induces Pupil Dilation and Attenuates Alpha Oscillations.
    Sharon O; Fahoum F; Nir Y
    J Neurosci; 2021 Jan; 41(2):320-330. PubMed ID: 33214317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From ear to eye? No effect of transcutaneous vagus nerve stimulation on human pupil dilation: A report of three studies.
    Burger AM; Van der Does W; Brosschot JF; Verkuil B
    Biol Psychol; 2020 Apr; 152():107863. PubMed ID: 32050095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of transcutaneous auricular vagus nerve stimulation on reversal learning, tonic pupil size, salivary alpha-amylase, and cortisol.
    D'Agostini M; Burger AM; Franssen M; Claes N; Weymar M; von Leupoldt A; Van Diest I
    Psychophysiology; 2021 Oct; 58(10):e13885. PubMed ID: 34245461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcutaneous vagus nerve stimulation (tVNS) modulates flow experience.
    Colzato LS; Wolters G; Peifer C
    Exp Brain Res; 2018 Jan; 236(1):253-257. PubMed ID: 29128975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control.
    Fischer R; Ventura-Bort C; Hamm A; Weymar M
    Cogn Affect Behav Neurosci; 2018 Aug; 18(4):680-693. PubMed ID: 29693214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of transcutaneous vagus nerve stimulation on muscle activity in the gastrointestinal tract (transVaGa): a prospective clinical trial.
    Hong GS; Pintea B; Lingohr P; Coch C; Randau T; Schaefer N; Wehner S; Kalff JC; Pantelis D
    Int J Colorectal Dis; 2019 Mar; 34(3):417-422. PubMed ID: 30519842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A literature review on the neurophysiological underpinnings and cognitive effects of transcutaneous vagus nerve stimulation: challenges and future directions.
    Colzato L; Beste C
    J Neurophysiol; 2020 May; 123(5):1739-1755. PubMed ID: 32208895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcutaneous Auricular Vagus Nerve Stimulation in Pediatric Patients: A Systematic Review of Clinical Treatment Protocols and Stimulation Parameters.
    Sigrist C; Torki B; Bolz LO; Jeglorz T; Bolz A; Koenig J
    Neuromodulation; 2023 Apr; 26(3):507-517. PubMed ID: 35995653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation.
    Bretherton B; Atkinson L; Murray A; Clancy J; Deuchars S; Deuchars J
    Aging (Albany NY); 2019 Jul; 11(14):4836-4857. PubMed ID: 31358702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a modulating effect of transcutaneous auricular vagus nerve stimulation (taVNS) on salivary alpha-amylase as indirect noradrenergic marker: A pooled mega-analysis.
    Giraudier M; Ventura-Bort C; Burger AM; Claes N; D'Agostini M; Fischer R; Franssen M; Kaess M; Koenig J; Liepelt R; Nieuwenhuis S; Sommer A; Usichenko T; Van Diest I; von Leupoldt A; Warren CM; Weymar M
    Brain Stimul; 2022; 15(6):1378-1388. PubMed ID: 36183953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcutaneous vagus nerve stimulation - A brief introduction and overview.
    Hilz MJ
    Auton Neurosci; 2022 Dec; 243():103038. PubMed ID: 36201901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The anatomical basis for transcutaneous auricular vagus nerve stimulation.
    Butt MF; Albusoda A; Farmer AD; Aziz Q
    J Anat; 2020 Apr; 236(4):588-611. PubMed ID: 31742681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression.
    Fang J; Egorova N; Rong P; Liu J; Hong Y; Fan Y; Wang X; Wang H; Yu Y; Ma Y; Xu C; Li S; Zhao J; Luo M; Zhu B; Kong J
    Neuroimage Clin; 2017; 14():105-111. PubMed ID: 28180068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phasic, Event-Related Transcutaneous Auricular Vagus Nerve Stimulation Modifies Behavioral, Pupillary, and Low-Frequency Oscillatory Power Responses.
    Wienke C; Grueschow M; Haghikia A; Zaehle T
    J Neurosci; 2023 Sep; 43(36):6306-6319. PubMed ID: 37591736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A distinct biomarker of continuous transcutaneous vagus nerve stimulation treatment in major depressive disorder.
    Tu Y; Fang J; Cao J; Wang Z; Park J; Jorgenson K; Lang C; Liu J; Zhang G; Zhao Y; Zhu B; Rong P; Kong J
    Brain Stimul; 2018; 11(3):501-508. PubMed ID: 29398576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Safety and tolerability of Transcutaneous Vagus Nerve stimulation in humans; a systematic review.
    Redgrave J; Day D; Leung H; Laud PJ; Ali A; Lindert R; Majid A
    Brain Stimul; 2018; 11(6):1225-1238. PubMed ID: 30217648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity.
    Clancy JA; Mary DA; Witte KK; Greenwood JP; Deuchars SA; Deuchars J
    Brain Stimul; 2014; 7(6):871-7. PubMed ID: 25164906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcutaneous vagus nerve stimulation and the realm of its therapeutic hopes and physiologic enigmas.
    Hilz MJ; Bolz A
    Auton Neurosci; 2022 Dec; 243():103039. PubMed ID: 36279622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.