These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 32202752)

  • 61. A high-performance rechargeable Mg
    Zhu C; Tang Y; Liu L; Sheng R; Li X; Gao Y; NuLi Y
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):307-313. PubMed ID: 32771740
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Novel Co
    Zhu C; Liu Z; Wang J; Pu J; Wu W; Zhou Q; Zhang H
    Small; 2017 Sep; 13(34):. PubMed ID: 28696586
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Porous graphene nanoarchitectures: an efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries.
    Sun B; Huang X; Chen S; Munroe P; Wang G
    Nano Lett; 2014 Jun; 14(6):3145-52. PubMed ID: 24854426
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Synthesis of single-crystalline spinel LiMn2 O4 Nanorods for lithium-ion batteries with high rate capability and long cycle life.
    Xie X; Su D; Sun B; Zhang J; Wang C; Wang G
    Chemistry; 2014 Dec; 20(51):17125-31. PubMed ID: 25339467
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ultrafine ternary metal oxide particles with carbon nanotubes: a metal-organic-framework-based approach and superior lithium-storage performance.
    Tang X; Liang M; Zhang Y; Sun W; Wang Y
    Dalton Trans; 2019 Mar; 48(13):4413-4419. PubMed ID: 30865194
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synthesis of CoO nanocrystals decorated porous carbon nanotube microspheres as sulfur host for high performance Li/S batteries.
    Wang J; Wang W; Zhang Y; Wang Y; Zhao Y
    Nanotechnology; 2020 Jan; 31(2):025403. PubMed ID: 31550690
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Simple synthesis of highly catalytic carbon-free MnCo2O4@Ni as an oxygen electrode for rechargeable Li-O2 batteries with long-term stability.
    Kalubarme RS; Jadhav HS; Ngo DT; Park GE; Fisher JG; Choi YI; Ryu WH; Park CJ
    Sci Rep; 2015 Aug; 5():13266. PubMed ID: 26292965
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Three-Dimensional Interconnected Network Architecture with Homogeneously Dispersed Carbon Nanotubes and Layered MoS
    Hu A; Long J; Shu C; Liang R; Li J
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34077-34086. PubMed ID: 30207681
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A Long-Cycle-Life Lithium-CO
    Ahmadiparidari A; Warburton RE; Majidi L; Asadi M; Chamaani A; Jokisaari JR; Rastegar S; Hemmat Z; Sayahpour B; Assary RS; Narayanan B; Abbasi P; Redfern PC; Ngo A; Vörös M; Greeley J; Klie R; Curtiss LA; Salehi-Khojin A
    Adv Mater; 2019 Oct; 31(40):e1902518. PubMed ID: 31441124
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Core-shell-structured CNT@RuO(2) composite as a high-performance cathode catalyst for rechargeable Li-O(2) batteries.
    Jian Z; Liu P; Li F; He P; Guo X; Chen M; Zhou H
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):442-6. PubMed ID: 24259081
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Verifying the Rechargeability of Li-CO
    Zhang Z; Wang XG; Zhang X; Xie Z; Chen YN; Ma L; Peng Z; Zhou Z
    Adv Sci (Weinh); 2018 Feb; 5(2):1700567. PubMed ID: 29619304
    [TBL] [Abstract][Full Text] [Related]  

  • 72. High-Performance, Long-Life, Rechargeable Li-CO
    Hu C; Gong L; Xiao Y; Yuan Y; Bedford NM; Xia Z; Ma L; Wu T; Lin Y; Connell JW; Shahbazian-Yassar R; Lu J; Amine K; Dai L
    Adv Mater; 2020 Apr; 32(16):e1907436. PubMed ID: 32108387
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Synergistic effect between ZnCo
    Tomar A; Zulkifli ; Singh J; Singh SP; Kim J; Rai AK
    Phys Chem Chem Phys; 2024 May; 26(17):13152-13163. PubMed ID: 38629633
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Engineering the Active Sites of Graphene Catalyst: From CO
    Chen B; Wang D; Zhang B; Zhong X; Liu Y; Sheng J; Zhang Q; Zou X; Zhou G; Cheng HM
    ACS Nano; 2021 Jun; 15(6):9841-9850. PubMed ID: 34033458
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Core-shell ZnCo
    Shi W; Zhao H; Lu B
    Nanotechnology; 2017 Apr; 28(16):165403. PubMed ID: 28230537
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Activated Co in Thiospinel Boosting Li
    Chen Y; Li J; Lu B; Liu Y; Mao R; Song Y; Li H; Yu X; Gao Y; Peng Q; Qi X; Zhou G
    Adv Mater; 2024 Oct; 36(40):e2406856. PubMed ID: 39177199
    [TBL] [Abstract][Full Text] [Related]  

  • 77. High-Performance Cathode Material of FeF
    Lu L; Li S; Li J; Lan L; Lu Y; Xu S; Huang S; Pan C; Zhao F
    Nanoscale Res Lett; 2019 Mar; 14(1):100. PubMed ID: 30877480
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In situ imaging electrocatalytic CO
    Yang T; Li H; Chen J; Ye H; Yao J; Su Y; Guo B; Peng Z; Shen T; Tang Y; Zhang L; Huang J
    Nanoscale; 2020 Dec; 12(47):23967-23974. PubMed ID: 33295923
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Highly Efficient Cu-Porphyrin-Based Metal-Organic Framework Nanosheet as Cathode for High-Rate Li-CO
    Xu Y; Gong H; Ren H; Fan X; Li P; Zhang T; Chang K; Wang T; He J
    Small; 2022 Nov; 18(45):e2203917. PubMed ID: 36156850
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mechanism-of-Action Elucidation of Reversible Li-CO
    Feng N; Wang B; Yu Z; Gu Y; Xu L; Ma J; Wang Y; Xia Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7396-7404. PubMed ID: 33541086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.