These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32202867)

  • 1. Restricted Boltzmann Machines for Quantum States with Non-Abelian or Anyonic Symmetries.
    Vieijra T; Casert C; Nys J; De Neve W; Haegeman J; Ryckebusch J; Verstraete F
    Phys Rev Lett; 2020 Mar; 124(9):097201. PubMed ID: 32202867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetries and Many-Body Excitations with Neural-Network Quantum States.
    Choo K; Carleo G; Regnault N; Neupert T
    Phys Rev Lett; 2018 Oct; 121(16):167204. PubMed ID: 30387658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helping restricted Boltzmann machines with quantum-state representation by restoring symmetry.
    Nomura Y
    J Phys Condens Matter; 2021 Apr; 33(17):. PubMed ID: 33530063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural-Network Quantum States for Spin-1 Systems: Spin-Basis and Parameterization Effects on Compactness of Representations.
    Pei MY; Clark SR
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective states of interacting anyons, edge states, and the nucleation of topological liquids.
    Gils C; Ardonne E; Trebst S; Ludwig AW; Troyer M; Wang Z
    Phys Rev Lett; 2009 Aug; 103(7):070401. PubMed ID: 19792620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning a compass spin model with neural network quantum states.
    Zou E; Long E; Zhao E
    J Phys Condens Matter; 2022 Jan; 34(12):. PubMed ID: 34915457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructing exact representations of quantum many-body systems with deep neural networks.
    Carleo G; Nomura Y; Imada M
    Nat Commun; 2018 Dec; 9(1):5322. PubMed ID: 30552316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local interactions and non-abelian quantum loop gases.
    Troyer M; Trebst S; Shtengel K; Nayak C
    Phys Rev Lett; 2008 Dec; 101(23):230401. PubMed ID: 19113527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetization and spin excitations of non-Abelian quantum Hall states.
    Yang K; Rezayi EH
    Phys Rev Lett; 2008 Nov; 101(21):216808. PubMed ID: 19113442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning spin liquids on a honeycomb lattice with artificial neural networks.
    Li CX; Yang S; Xu JB
    Sci Rep; 2021 Aug; 11(1):16667. PubMed ID: 34404816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solving the Liouvillian Gap with Artificial Neural Networks.
    Yuan D; Wang HR; Wang Z; Deng DL
    Phys Rev Lett; 2021 Apr; 126(16):160401. PubMed ID: 33961454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gauge Equivariant Neural Networks for Quantum Lattice Gauge Theories.
    Luo D; Carleo G; Clark BK; Stokes J
    Phys Rev Lett; 2021 Dec; 127(27):276402. PubMed ID: 35061436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Globally symmetric topological phase: from anyonic symmetry to twist defect.
    Teo JC
    J Phys Condens Matter; 2016 Apr; 28(14):143001. PubMed ID: 26953520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin-Projected Matrix Product States: Versatile Tool for Strongly Correlated Systems.
    Li Z; Chan GK
    J Chem Theory Comput; 2017 Jun; 13(6):2681-2695. PubMed ID: 28467847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general non-Abelian density matrix renormalization group algorithm with application to the C2 dimer.
    Sharma S
    J Chem Phys; 2015 Jan; 142(2):024107. PubMed ID: 25591338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractionalization of itinerant anyons in one-dimensional chains.
    Poilblanc D; Troyer M; Ardonne E; Bonderson P
    Phys Rev Lett; 2012 May; 108(20):207201. PubMed ID: 23003180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variational Ansatz for an Abelian to Non-Abelian Topological Phase Transition in ν=1/2+1/2 Bilayers.
    Crépel V; Estienne B; Regnault N
    Phys Rev Lett; 2019 Sep; 123(12):126804. PubMed ID: 31633987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ground and excited states of spinor fermi gases in tight waveguides and the Lieb-Liniger-Heisenberg model.
    Girardeau MD
    Phys Rev Lett; 2006 Nov; 97(21):210401. PubMed ID: 17155729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer learning for scalability of neural-network quantum states.
    Zen R; My L; Tan R; Hébert F; Gattobigio M; Miniatura C; Poletti D; Bressan S
    Phys Rev E; 2020 May; 101(5-1):053301. PubMed ID: 32575207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the Lowest-Energy States for the Model Distribution of Trained Restricted Boltzmann Machines Using a 1000 Qubit D-Wave 2X Quantum Computer.
    Koshka Y; Perera D; Hall S; Novotny MA
    Neural Comput; 2017 Jul; 29(7):1815-1837. PubMed ID: 28562219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.