These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32203024)

  • 1. In Situ High-Resolution AFM Imaging and Force Probing of Cell Culture Medium-Forming Nanogranular Surfaces for Cell Growth.
    Li M; Xi N; Wang Y; Liu L
    IEEE Trans Nanobioscience; 2020 Jul; 19(3):385-393. PubMed ID: 32203024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical Micro-/Nanotopography for Tuning Structures and Mechanics of Cells Probed by Atomic Force Microscopy.
    Li M; Xi N; Liu L
    IEEE Trans Nanobioscience; 2021 Oct; 20(4):543-553. PubMed ID: 34242170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotopographical Surfaces for Regulating Cellular Mechanical Behaviors Investigated by Atomic Force Microscopy.
    Li M; Xi N; Wang Y; Liu L
    ACS Biomater Sci Eng; 2019 Oct; 5(10):5036-5050. PubMed ID: 33455251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale imaging and force probing of biomolecular systems using atomic force microscopy: from single molecules to living cells.
    Li M; Dang D; Xi N; Wang Y; Liu L
    Nanoscale; 2017 Nov; 9(45):17643-17666. PubMed ID: 29135007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating biomolecular recognition at the cell surface using atomic force microscopy.
    Wang C; Yadavalli VK
    Micron; 2014 May; 60():5-17. PubMed ID: 24602267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining confocal and atomic force microscopy to quantify single-virus binding to mammalian cell surfaces.
    Newton R; Delguste M; Koehler M; Dumitru AC; Laskowski PR; Müller DJ; Alsteens D
    Nat Protoc; 2017 Nov; 12(11):2275-2292. PubMed ID: 28981124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic force microscopy: probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution.
    Scheuring S; Dufrêne YF
    Mol Microbiol; 2010 Mar; 75(6):1327-36. PubMed ID: 20132452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of selective attachment and growth of smooth muscle cells on gelatin- and fibronectin-coated micropatterns.
    Li M; Cui T; Mills DK; Lvov YM; McShane MJ
    J Nanosci Nanotechnol; 2005 Nov; 5(11):1809-15. PubMed ID: 16433414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic Force Microscopy as a Powerful Multifunctional Tool for Probing the Behaviors of Single Proteins.
    Li M; Xi N; Wang Y; Liu L
    IEEE Trans Nanobioscience; 2020 Jan; 19(1):78-99. PubMed ID: 31751281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular replication and atomic force microscope imaging using a UV-Bioimprint technique.
    Muys JJ; Alkaisi MM; Evans JJ
    Nanomedicine; 2006 Sep; 2(3):169-76. PubMed ID: 17292139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy.
    Li M; Dang D; Liu L; Xi N; Wang Y
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28117741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The measurement of Bacillus mycoides spore adhesion using atomic force microscopy, simple counting methods, and a spinning disk technique.
    Bowen WR; Fenton AS; Lovitt RW; Wright CJ
    Biotechnol Bioeng; 2002 Jul; 79(2):170-9. PubMed ID: 12115433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule imaging of cell surfaces using near-field nanoscopy.
    Hinterdorfer P; Garcia-Parajo MF; Dufrêne YF
    Acc Chem Res; 2012 Mar; 45(3):327-36. PubMed ID: 21992025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic force microscopy: a nanoscopic view of microbial cell surfaces.
    Dorobantu LS; Goss GG; Burrell RE
    Micron; 2012 Dec; 43(12):1312-22. PubMed ID: 22673001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of liposomes of differing lipid composition in aqueous medium by means of atomic force microscopy.
    Takechi-Haraya Y; Sakai-Kato K; Abe Y; Kawanishi T; Okuda H; Goda Y
    Microscopy (Oxf); 2016 Aug; 65(4):383-9. PubMed ID: 27020464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of culture conditions on Escherichia coli O157:H7 biofilm formation by atomic force microscopy.
    Oh YJ; Jo W; Yang Y; Park S
    Ultramicroscopy; 2007 Oct; 107(10-11):869-74. PubMed ID: 17544218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of the unroofing technique for atomic force microscopic imaging of the intra-cellular cytoskeleton under aqueous conditions.
    Usukura J; Yoshimura A; Minakata S; Youn D; Ahn J; Cho SJ
    J Electron Microsc (Tokyo); 2012; 61(5):321-6. PubMed ID: 22872282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite Nanostructures and Adhesion Analysis of Natural Plant Hydrogels Investigated by Atomic Force Microscopy.
    Li M; Xi N; Wang Y; Liu L
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):448-455. PubMed ID: 30990433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.