BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32203025)

  • 1. Categorical Matrix Completion With Active Learning for High-Throughput Screening.
    Chen J; Hou J; Wong KC
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2261-2270. PubMed ID: 32203025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Analysis and In silico Predictive Modeling for Inhibitors of PhoP Regulon in S. typhi on High-Throughput Screening Bioassay Dataset.
    Kaur H; Ahmad M; Scaria V
    Interdiscip Sci; 2016 Mar; 8(1):95-101. PubMed ID: 26298582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active machine learning-driven experimentation to determine compound effects on protein patterns.
    Naik AW; Kangas JD; Sullivan DP; Murphy RF
    Elife; 2016 Feb; 5():e10047. PubMed ID: 26840049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Supervised and Unsupervised Machine Learning Methods for Phenotypic Functional Genomics Screening.
    Omta WA; van Heesbeen RG; Shen I; de Nobel J; Robers D; van der Velden LM; Medema RH; Siebes APJM; Feelders AJ; Brinkkemper S; Klumperman JS; Spruit MR; Brinkhuis MJS; Egan DA
    SLAS Discov; 2020 Jul; 25(6):655-664. PubMed ID: 32400262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of categorical matrix completion algorithms: toward improved active learning for drug discovery.
    Sun H; Murphy RF
    Bioinformatics; 2021 Oct; 37(20):3538-3545. PubMed ID: 33983377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomarker discovery using dry-lab technologies and high-throughput screening.
    Chang HT
    Biomark Med; 2016 Jun; 10(6):559-61. PubMed ID: 27278686
    [No Abstract]   [Full Text] [Related]  

  • 7. Efficient design of meganucleases using a machine learning approach.
    Zaslavskiy M; Bertonati C; Duchateau P; Duclert A; Silva GH
    BMC Bioinformatics; 2014 Jun; 15():191. PubMed ID: 24934562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast determination of the optimal rotational matrix for macromolecular superpositions.
    Liu P; Agrafiotis DK; Theobald DL
    J Comput Chem; 2010 May; 31(7):1561-3. PubMed ID: 20017124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Distance-Based Boolean Applicability Domain for Classification of High Throughput Screening Data.
    Berenger F; Yamanishi Y
    J Chem Inf Model; 2019 Jan; 59(1):463-476. PubMed ID: 30567434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of supervised machine learning applied to ageing research.
    Fabris F; Magalhães JP; Freitas AA
    Biogerontology; 2017 Apr; 18(2):171-188. PubMed ID: 28265788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active-learning strategies in computer-assisted drug discovery.
    Reker D; Schneider G
    Drug Discov Today; 2015 Apr; 20(4):458-65. PubMed ID: 25499665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational methods for evaluation of cell-based data assessment--Bioconductor.
    Le Meur N
    Curr Opin Biotechnol; 2013 Feb; 24(1):105-11. PubMed ID: 23062230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cheminformatics approaches to analyze diversity in compound screening libraries.
    Akella LB; DeCaprio D
    Curr Opin Chem Biol; 2010 Jun; 14(3):325-30. PubMed ID: 20457001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting cellular responses to complex perturbations in high-throughput screens.
    Lotfollahi M; Klimovskaia Susmelj A; De Donno C; Hetzel L; Ji Y; Ibarra IL; Srivatsan SR; Naghipourfar M; Daza RM; Martin B; Shendure J; McFaline-Figueroa JL; Boyeau P; Wolf FA; Yakubova N; Günnemann S; Trapnell C; Lopez-Paz D; Theis FJ
    Mol Syst Biol; 2023 Jun; 19(6):e11517. PubMed ID: 37154091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BioImageXD: an open, general-purpose and high-throughput image-processing platform.
    Kankaanpää P; Paavolainen L; Tiitta S; Karjalainen M; Päivärinne J; Nieminen J; Marjomäki V; Heino J; White DJ
    Nat Methods; 2012 Jun; 9(7):683-9. PubMed ID: 22743773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of active learning approaches to experimental design for uncovering biological networks.
    Sverchkov Y; Craven M
    PLoS Comput Biol; 2017 Jun; 13(6):e1005466. PubMed ID: 28570593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of zinc-binding sites using multiple sequence profiles and machine learning methods.
    Yan R; Wang X; Tian Y; Xu J; Xu X; Lin J
    Mol Omics; 2019 Jun; 15(3):205-215. PubMed ID: 31046040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational models for in-vitro anti-tubercular activity of molecules based on high-throughput chemical biology screening datasets.
    Periwal V; Kishtapuram S; ; Scaria V
    BMC Pharmacol; 2012 Mar; 12():1. PubMed ID: 22463123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning methodology for high throughput personalized neutron dose reconstruction in mixed neutron + photon exposures.
    Shuryak I; Turner HC; Pujol-Canadell M; Perrier JR; Garty G; Brenner DJ
    Sci Rep; 2021 Feb; 11(1):4022. PubMed ID: 33597632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.